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understand what it means to learn a probabilistic model of the data

using maximum likelihood principle
using Bayesian inference

prior, posterior, posterior predictive
MAP inference
Beta-Bernoulli conjugate pairs

Objectives
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Parameter estimation
a coin's head/tail outcome has a Bernoulli distribtion

Bernoulli(x∣θ) = θ (1 −x θ)(1−x)

Objective: learn the model parameter θ

this is our probabilistic model of some head/tail IID data D = {0, 0, 1, 1, 0, 0, 1, 0, 0, 1}

since we are only interested in the counts, we can also use Binomial distribution

Binomial(N ,N ∣θ) =h θ (1 −(
Nh

N ) Nh θ)N−Nh

N =h x∑x∈D
∣D∣

# heads
Nt
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p(x∣θ) = {θ

1 − θ

x = 1
x = 0

θ

1 − θ

0 1

reminder: Bernoulli random
variable takes values of 0 or 1,
e.g. head/tail in a coin toss 



Maximum likelihood
a coin's head/tail outcome has a Bernoulli distribtion

Bernoulli(x∣θ) = θ (1 −x θ)(1−x)

this is our probabilistic model of some head/tail IID data

Objective: learn the model parameter θ

D = {0, 0, 1, 1, 0, 0, 1, 0, 0, 1}

Idea: find the parameter    that maximizes the probability of observing Dθ

Max-likelihood assignment

note that this is not a probability density!

L(θ;D) = Bernoulli(x∣θ) =∏x∈D θ (1 −4 θ)6Likelihood is a function of θ
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Maximizing log-likelihood

L(θ;D) = p(x; θ)∏x∈Dlikelihood

using product here creates extreme values

for 100 samples in our example, the likelihood shrinks below 1e-30

log-likelihood has the same maximum but it is well-behaved

ℓ(θ;D) = log(L(θ;D)) = log(p(x; θ))∑x∈D

how do we find the max-likelihood parameter? θ =∗ argmax ℓ(θ;D)θ

for some simple models we can get the closed form solution

for complex models we need to use numerical optimization
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Maximizing log-likelihood

log-likelihood ℓ(θ;D) = log(L(θ;D)) = log(Bernoulli(x; θ))∑x∈D

idea: set the the derivative to zero and solve for θ

observation: at maximum, the derivative of              is zeroℓ(θ;D)

θ∗
max-likelihood for Bernoulliexample

ℓ(θ;D) =∂θ
∂ log θ (1 − θ)∂θ

∂ ∑x∈D ( x (1−x))
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= −∑x θ
x =1−θ

1−x 0

= x log θ +∂θ
∂ ∑x (1 − x) log(1 − θ)

which gives                                  θ =MLE
∣D∣

x∑x∈D   is simply the portion of heads in our dataset

  what is  when ? θMLE D = {0, 0, 1, 1, 0, 0, 1, 0, 0, 1}



Bayesian approach

max-likelihood estimate does not reflect our uncertainty:

e.g.,  for both 1/5 heads and 1000/5000 heads

in which case are we more certain of the predicted ?

θ =MLE .2

θ

How can we quantify our uncertainty about our prediction?

(.5, 100%)

(.25, 50%) (.75, 50%)

Rnode

Rleft Rright

p(y = +) = , p(y =4
1 −) = 4

3

4 .  1



Bayesian approach

how to update degree of certainty given data?

p(θ∣D) =
p(D)

p(θ)p(D∣θ)
prior likelihood of the data

previously denoted by  L(θ;D)

evidence: this is a normalization, marginal likelihood of data

p(D) = p(θ )p(D∣θ )dθ∫ ′ ′ ′

using Bayes rule

How can we quantify our uncertainty about our prediction?
capture it using a conditional probability distribution instead of a single best guess

observed

hidden

Using the Bayesian inference approach

we maintain a distribution over parameters
after observing  we update this distributionD p(θ∣D)

p(θ) prior

posterior

what do we believe about  before any observationθ

We can get a point estimate by collapsing this posterior
distribution to a single point, i.e. the best guess 4 .  2



patient having cancer?c = {yes, no}

x ∈ {−,+} observed test results, a single binary feature

p(c = yes ∣ x) =
p(x)

p(c=yes)p(x∣c=yes)

prior: .1% of population has cancer p(yes) = .001

posterior: p(yes∣+) = .0177

likelihood:
 

p(+∣yes) = .9
 

TP rate of the test (90%)

p(+) = p(yes)p(+∣yes) + p(no)p(+∣no) = .001 × .9 + .999 × .05 = .05evidence:

 
FP rate of the test (5%)
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Bayes rule: example reminder



Conjugate Priors
in our coin example, we know the form of likelihood:

p(θ∣D)?
p(θ)?prior

posterior
likelihood p(D∣θ) = Bernoulli(x; θ)∏x∈D

distribution of this form has a name, Beta distribution

To simplify the computation we want prior and posterior to have the same form

this gives us the following form p(θ∣a, b) ∝ θ (1 −a θ)b
this means there is a normalization constant that does not depend on  θ

(so that we can easily
update our belief with
new observations)

∝ ×posterior prior likelihood
proportional
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we say Beta distribution is a conjugate prior to the Bernoulli likelihood

= θ (1 −Nh θ)Nt

p(θ : α ) ∝′ p(θ : α) × p(D∣θ)

co
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Beta distribution

Beta distribution has the following density

Beta(θ∣α,β) = θ (1 −Γ(α+β)
Γ(α)Γ(β) α−1 θ)β−1

normalization
Γ is the generalization of factorial to real number Γ(a+ 1) = aΓ(a)α,β > 0

is uniformBeta(θ∣α = β = 1)

mean of the distribution is E[θ] = α+β
α

for                 the dist. is unimodal; its mode is α+β−2
α−1

α,β > 1
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Beta distribution: more examples
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Beta-Bernoulli conjugate pair

p(θ) ∝ θ (1 −α−1 θ)β−1prior

p(θ∣D) ∝ θ (1 −α+N −1h θ)β+N −1tposterior

are called pseudo-counts
their effect is similar to imaginary observation of heads (  ) and tails (  )α β

α,β

likelihood p(D∣θ) = θ (1 −Nh θ)Nt

product of Bernoulli likelihoods
equivalent to Binomial likelihood

L(θ;D) = Bernoulli(N ,N ∣θ)∏ h t

∝ ×posterior prior likelihood
proportional

4 .  7

p(θ) = Beta(θ∣α,β)

how to model probability of heads when we toss a coin  timesN

p(θ∣D) = Beta(θ∣α+N ,β +h N )t
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Effect of more data
with few observations, prior has a high influence
as we increase the number of observations  the effect of prior diminishesN = ∣D∣
the likelihood term dominates the posterior

p(θ∣D) ∝ θ (1 −10+H θ)10+N−H

plot of the posterior density with n observations

Beta(θ∣10, 10)example prior

n=256n=16
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Posterior predictive

our goal was to estimate the parameters (     ) so that we can make predictions  θ

if we see four heads in a row, what is the probability of seeing a tail next?

if , what is ?D = {1, 1, 1, 1} θMLE

what if we use the maximum likelihood estimste for the best parameter, , and plug it in
the  to make the prediction? 

θMLE

p(x∣θ)

Example:

 1.0

p(0∣θ) = θ (1 −0 θ) =(1−0) 1 − θ
⇒ 1− θ =MLE 0.0

Next, let's use the posterior distribution we learn through Bayesian inference

5 .  1



Posterior predictive

our goal was to estimate the parameters (     ) so that we can make predictionsθ

To make predictions, we calculate the average prediction over all possible values of θ

p(x∣D) = p(θ∣D)p(x∣θ)dθ∫
θ

for each possible    , weight the prediction by the
posterior probability of that parameter being true

θ

now we have a (posterior) distribution over parameters, , rather than a single 
 only gives a single best guess based on that parameter, 

p(θ∣D) θMLE

θMLE p(x∣θ)

posterior predictive

5 .  2



Posterior predictive

our goal was to estimate the parameters (     ) so that we can make predictionsθ

To make predictions, we calculate the average prediction over all possible values of θ

now we have a (posterior) distribution over parameters, p(θ∣D)

Example  if we see four heads in a row, what is the probability of seeing a tail next?
if , what is ?D = {1, 1, 1, 1} p(0∣D)

when the strenght of prior gets close to zero the prediction becomes similar to MLE

depends on our prior belief

5 .  3



p(x = 1∣D) = Bernoulli(x =∫
θ

1∣θ)Beta(θ∣α+N ,β +h N )dθt

Posterior predictive for Beta-Bernoulli

what is the probability that the next coin flip is head?

start from a Beta prior p(θ) = Beta(θ∣α,β)
p(θ∣D) = Beta(θ∣α+N ,β +h N )tobserve       heads and        tails, the posterior isNh Nt

mean of Beta dist.

= θBeta(θ∣α+∫
θ

N ,β +h N )dθ =t α+β+N
α+Nh

compare with prediction of maximum-likelihood: p(x = 1∣D) = =
N
Nh 1, p(x = 1∣D) = 0

Given this estimate of the parameters from training data,
how can we predict the future?

marginalize over θ

if we see four heads in a row, what is the probability of seeing a tail next?
if , what is ?
when we assume the prior is 

D = {1, 1, 1, 1} p(1∣D)

Beta(α = 10,β = 10)

5 .  4

Example 

,   ?24
14 p(0∣D) 24

10



Posterior predictive for Beta-Bernoulli
start from a Beta prior p(θ) = Beta(θ∣α,β)

p(θ∣D) = Beta(θ∣α+N ,β +h N )tobserve       heads and        tails, the posterior isNh Nt

p(x = 1∣D) = Bernoulli(x =∫
θ

1∣θ)Beta(θ∣α+N ,β +h N )dθt =
α+β+N
α+Nh

compare with prediction of maximum-likelihood: p(x = 1∣D) =
N
Nh

Laplace smoothing
if we assume a uniform prior, the posterior predictive is p(x = 1∣D) =

N+2
N +1h

Given this estimate of the parameters from training data, how can we predict the future?

Example:
sequential Baysian

updating
with uniform prior

( )N ,Nh t

5 .  5

a.k.a. add-one smoothing
to avoid ruling out unseen

cases with zero counts 



Strength of the prior
with a strong prior we need many samples to really change the posterior
for Beta distribution               decides how strong the prior is: how confident we are in our priorα+ β

different prior means α+β
α

different prior strength α+ β

example

N N

p
(x
=
1∣

D
)

p
(x
=
1∣

D
)

true value

posterior estimates posterior estimates

as our dataset grows our estimate becomes more accurate

example: PGM book by Koller & Friedman, figure 17.5
5 .  6
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Maximum a Posteriori (MAP)
sometimes it is difficult to work with the posterior dist. over parameters

alternative: use the parameter with the highest posterior probability p(θ∣D)

θ =MAP argmax p(θ∣D) =θ argmax p(θ)p(D∣θ)θMAP estimate

compare with max-likelihood estimate

θ =MLE argmax p(D∣θ)θ

(the only difference is in the prior term)

example for the posterior    p(θ∣D) = Beta(θ∣α+N ,β +h N )t

MAP estimate is the mode of posterior θ =MAP
α+β+N +N −2h t

α+N −1h

θ =MLE
N +Nh t

Nhcompare with MLE

they are equal for uniform prior α = β = 1
5 .  7

D = {1, 1, 1, 1}

D = {0, 0, 0, 1}



Categorical distribution
what if we have more than two categories (e.g., loaded dice instead of coin)

instead of Bernoulli we have multinoulli or categorical dist.

Cat(x∣θ) = θ∏k=1
K

k

I(x=k)
# categories

θ1:5

θ6

1 2 3 4 5 6
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θ

1 − θ

0 1
categorical distribution Bernoulli distributiononce:
multinomial distributionbinomial distributionn times:

Bernoulli(x∣θ) = θ (1 −x θ)(1−x)

p(x∣θ) = {θ

1 − θ

x = 1
x = 0

p(x∣θ) =

⎩⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎧θ1

θ2

θ3

θ4

θ5

θ6

x = 1
x = 2
x = 3
x = 4
x = 5
x = 6



Categorical distribution
what if we have more than two categories (e.g., loaded dice instead of coin)
instead of Bernoulli we have multinoulli or categorical dist.

Cat(x∣θ) = θ∏k=1
K

k

I(x=k)
# categories

θ =∑k k 1where

belongs to probability simplexθ

K = 3

θ +1 θ +2 θ =3 1
p(x∣θ) =

⎩⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎧θ1

θ2

θ3

θ4

θ5

θ6

x = 1
x = 2
x = 3
x = 4
x = 5
x = 6

θ =∑k
6

k 1 6 .  2



Maximum likelihood for categorical dist.

ℓ(θ,D) = I(x =∑x∈D ∑k k) log(θ ) =k N log(θ )∑k k klog-likelihood

similar to the binary case, max-likelihood estimate is given by data-frequencies θ =k
MLE

N
Nk

example categorical distribution with K=8

frequencies are max-likelihood parameter estimates

θ =5
MLE .149

θ =∑k k 1ℓ(θ,D) =∂θk
∂ 0  subject towe need to solve

likelihood p(D∣θ) = Cat(x∣θ)∏x∈D
= θ =∏

x∈D ∏
k=1
K

k

I(x=k)
θ∏

k=1
K

k
Nk
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, N =k I(x =∑x∈D k)

using Lagrange multipliers



Dirichlet distribution

is a distribution over the parameters     of a Categorical dist.θ

is a generalization of Beta distribution to K categories

θ =∑k k 1this should be a dist. over prob. simplex

for K=2, it reduces to Beta distribution

α =

K = 3

Dir(θ, [.2, .2, .2])

Dir(θ∣α) = θΓ(α )∏k k

Γ( α )∑k k ∏k k
α −1k

normalization constant

vector of psedo-counts for K categories (aka concentration parameters)
α >k 0 ∀k

for                                 , we get uniform distributionα = [1,… , 1]

6 .  4

optional
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Dirichlet-Categorical conjugate pair
Dirichlet dist.  is a conjugate prior for Categorical dist.  Dir(θ∣α) = θΓ(α )∏k k

Γ( α )∑k k ∏k k
α −1k Cat(x∣θ) = θ∏k k

I(x=k)

prior p(θ) = Dir(θ∣α) ∝ θ∏k k
α −1k

likelihood we observe                        values from each categoryN ,… ,N1 Kp(D∣θ) = θ∏k k
Nk

η

optional

posterior predictive p(x = k∣D) =
α +N∑

k′ k′ k′

α +Nk k

MAP θ =k
MAP

( α +N )−K∑
k′ k′ k′

α +N −1k k

6 .  5

posterior p(θ∣D) = Dir(θ∣α+ η) ∝ θ∏k k
N +α −1k k again, we add the real counts to pseudo-counts

∝ ×posterior prior likelihood



Summary
in ML we often build a probabilistic model of the data p(x; θ)
learning a good model could mean maximizing the likelihood of the data

max log p(D∣θ)θ
sometimes closed form solution
for more complex p, we use numerical methods

an alternative is a Bayesian approach:

maintain a distribution over model parameters

can specify our prior knowledge

we can use Bayes rule to update our belief after new oabservation

we can make predictions using posterior predictive
can be computationally expensive (not in our examples so far)

 

p(θ)

p(θ∣D)

p(x∣D)

max log p(D∣θ)p(θ)θa middle path is MAP estimate:

models our prior belief
use a single point estimate and picks the model with highest posterior probability
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