Applied Machine Learning

Maximum Likelihood and Bayesian Reasoning

Reihaneh Rabbany

COMP 551 (winter 2021) 1

Objectives

understand what it means to learn a probabilistic model of the data

- using maximum likelihood principle
- using Bayesian inference
- prior, posterior, posterior predictive
- MAP inference
- Beta-Bernoulli conjugate pairs

Parameter estimation

a coin's head/tail outcome has a Bernoulli distribtion
$\operatorname{Bernoulli}(x \mid \theta)=\theta^{x}(1-\theta)^{(1-x)} \quad \begin{aligned} & \begin{array}{l}\text { reminder: Bernoulli random } \\ \text { variable takes values of } 0 \text { or } 1, \\ \text { e.g. head/tail in a coin toss }\end{array}\end{aligned} \quad p(x \mid \theta)= \begin{cases}\theta & x=1 \\ 1-\theta & x=0\end{cases}$

this is our probabilistic model of some head/tail IID data $\mathcal{D}=\{0,0,1,1,0,0,1,0,0,1\}$
Objective: learn the model parameter θ
since we are only interested in the counts, we can also use Binomial distribution

Maximum likelihood

a coin's head/tail outcome has a Bernoulli distribtion

$$
\operatorname{Bernoulli}(x \mid \theta)=\theta^{x}(1-\theta)^{(1-x)}
$$

this is our probabilistic model of some head/tail IID data $\mathcal{D}=\{0,0,1,1,0,0,1,0,0,1\}$
Objective: learn the model parameter θ
Max-likelihood assignment
Idea: find the parameter θ that maximizes the probability of observing \mathcal{D}

Likelihood $L(\theta ; \mathcal{D})=\prod_{x \in \mathcal{D}} \operatorname{Bernoulli}(x \mid \theta)=\theta^{4}(1-\theta)^{6}$ is a function of θ

Maximizing log-likelihood

likelihood $L(\theta ; \mathcal{D})=\prod_{x \in \mathcal{D}} p(x ; \theta)$
using product here creates extreme values
for 100 samples in our example, the likelihood shrinks below 1e-30
log-likelihood has the same maximum but it is well-behaved

$$
\ell(\theta ; \mathcal{D})=\log (L(\theta ; \mathcal{D}))=\sum_{x \in \mathcal{D}} \log (p(x ; \theta))
$$

how do we find the max-likelihood parameter? $\quad \theta^{*}=\arg \max _{\theta} \ell(\theta ; \mathcal{D})$
for some simple models we can get the closed form solution for complex models we need to use numerical optimization

Maximizing log-likelihood

\log-likelihood $\ell(\theta ; \mathcal{D})=\log (L(\theta ; \mathcal{D}))=\sum_{x \in \mathcal{D}} \log (\operatorname{Bernoulli}(x ; \theta))$ observation: at maximum, the derivative of $\ell(\theta ; \mathcal{D})$ is zero idea: set the the derivative to zero and solve for θ

example

max-likelihood for Bernoulli

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \ell(\theta ; \mathcal{D}) & =\frac{\partial}{\partial \theta} \sum_{x \in \mathcal{D}} \log \left(\theta^{x}(1-\theta)^{(1-x)}\right) \\
& =\frac{\partial}{\partial \theta} \sum_{x} x \log \theta+(1-x) \log (1-\theta) \\
& =\sum_{x} \frac{x}{\theta}-\frac{1-x}{1-\theta}=0
\end{aligned}
$$

which gives $\theta^{M L E}=\frac{\sum_{x \in \mathcal{D}} x}{|\mathcal{D}|}$ is simply the portion of heads in our dataset

Bayesian approach

max-likelihood estimate does not reflect our uncertainty:

- e.g., $\theta^{M L E}=.2$ for both $1 / 5$ heads and 1000/5000 heads
- in which case are we more certain of the predicted θ ?

ML solution with increasing data

$$
p(y=+)=\frac{1}{4}, p(y=-)=\frac{3}{4}
$$

How can we quantify our uncertainty about our prediction?

Bayesian approach

How can we quantify our uncertainty about our prediction?

capture it using a conditional probability distribution instead of sangle eest guess

Using the Bayesian inference approach

- we maintain a distribution over parameters $p(\theta)$
- after observing \mathcal{D} we update this distribution $p(\theta \mid \mathcal{D})$
prior
posterior
how to update degree of certainty given data? using Bayes rule

evidence: this is a normalization, marginal likelihood of data

$$
p(\mathcal{D})=\int p\left(\theta^{\prime}\right) p\left(\mathcal{D} \mid \theta^{\prime}\right) \mathrm{d} \theta^{\prime}
$$

Bayes rule: example reminder

$c=\{$ yes, no $\}$ patient having cancer?
$x \in\{-,+\}$ observed test results, a single binary feature

Conjugate Priors

in our coin example, we know the form of likelihood:

```
p(0)?
p(0|\mathcal{D})?
p(\mathcal{D}|0)=\mp@subsup{\prod}{x\in\mathcal{D}}{}\operatorname{Bernoulli}(x;0)=\mp@subsup{0}{}{\mp@subsup{N}{h}{}}(1-0\mp@subsup{)}{}{\mp@subsup{N}{t}{}}
```


To simplify the computation we want prior and posterior to have the same form this gives us the following form $\quad p(\theta \mid a, b) \propto \theta^{a}(1-\theta)^{b}$
(so that we can easily update our belief with new observations)
we say Beta distribution is a conjugate prior to the Bernoulli likelihood

Beta distribution

Beta distribution has the following density

Beta distribution: more examples

$\operatorname{Beta}(3,2)$

Beta $(2,2)$

Beta $(15,10)$

$\operatorname{Beta}(10,10)$

Beta $(0.5,0.5)$

Beta-Bernoulli conjugate pair

how to model probability of heads when we toss a coin N times
proportional
posterior \propto prior \times likelihood
prior
$p(\theta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$
likelihood
$p(\mathcal{D} \mid \theta)=\theta^{N_{h}}(1-\theta)^{N_{t}}$
posterior

$$
\begin{aligned}
& p(\theta)=\operatorname{Beta}(\theta \mid \alpha, \beta) \\
& L(\theta ; \mathcal{D})=\prod \operatorname{Bernoulli}\left(N_{h}, N_{t} \mid \theta\right)
\end{aligned}
$$

product of Bernoulli likelihoods equivalent to Binomial likelihood
$p(\theta \mid \mathcal{D})=\operatorname{Beta}\left(\theta \mid \alpha+N_{h}, \beta+N_{t}\right)$
α, β are called pseudo-counts
their effect is similar to imaginary observation of heads (α) and tails (β)

Effect of more data

with few observations, prior has a high influence as we increase the number of observations $N=|\mathcal{D}|$ the effect of prior diminishes the likelihood term dominates the posterior
example prior $\operatorname{Beta}(\theta \mid 10,10)$
plot of the posterior density with \mathbf{n} observations
$p(\theta \mid \mathcal{D}) \propto \theta^{10+H}(1-\theta)^{10+N-H}$

Posterior predictive

our goal was to estimate the parameters (θ) so that we can make predictions what if we use the maximum likelihood estimste for the best parameter, $\theta^{M L E}$, and plug it in the $p(x \mid \theta)$ to make the prediction?

Example:

if we see four heads in a row, what is the probability of seeing a tail next?

$$
\text { if } \mathcal{D}=\{1,1,1,1\} \text {, what is } \theta^{M L E} ? 1.0
$$

$$
p(0 \mid \theta)=\theta^{0}(1-\theta)^{(1-0)}=1-\theta
$$

$$
\Rightarrow 1-\theta^{M L E}=0.0
$$

Next, let's use the posterior distribution we learn through Bayesian inference

Posterior predictive

our goal was to estimate the parameters (θ) so that we can make predictions now we have a (posterior) distribution over parameters, $p(\theta \mid \mathcal{D})$, rather than a single $\theta^{M L E}$ $\theta^{M L E}$ only gives a single best guess based on that parameter, $p(x \mid \theta)$

To make predictions, we calculate the average prediction over all possible values of θ

$$
p(x \mid \mathcal{D})=\int_{\theta} p(\theta \mid \mathcal{D}) p(x \mid \theta) \mathrm{d} \theta
$$

for each possible θ, weight the prediction by the posterior probability of that parameter being true
posterior predictive

Posterior predictive

our goal was to estimate the parameters (θ) so that we can make predictions
now we have a (posterior) distribution over parameters, $p(\theta \mid \mathcal{D})$
To make predictions, we calculate the average prediction over all possible values of θ
Example if we see four heads in a row, what is the probability of seeing a tail next? if $\mathcal{D}=\{1,1,1,1\}$, what is $p(0 \mid \mathcal{D})$? depends on our prior belief

Posterior predictive for Beta-Bernoulli

start from a Beta prior $p(\theta)=\operatorname{Beta}(\theta \mid \alpha, \beta)$ observe N_{h} heads and N_{t} tails, the posterior is $p(\theta \mid \mathcal{D})=\operatorname{Beta}\left(\theta \mid \alpha+N_{h}, \beta+N_{t}\right)$ Given this estimate of the parameters from training data,
 how can we predict the future?
what is the probability that the next coin flip is head?

$$
\begin{aligned}
p(x=1 \mid \mathcal{D}) & =\int_{\theta}^{\text {marginalize over } \theta} \operatorname{Bernoulli}(x=1 \mid \theta) \operatorname{Beta}\left(\theta \mid \alpha+N_{h}, \beta+N_{t}\right) \mathrm{d} \theta \\
& =\int_{\theta} \theta \operatorname{Beta}\left(\theta \mid \alpha+N_{h}, \beta+N_{t}\right) d \theta=\frac{\alpha+N_{h}}{\alpha+\beta+N}
\end{aligned}
$$

mean of Beta dist.
Example if we see four heads in a row, what is the probability of seeing a tail next? if $\mathcal{D}=\{1,1,1,1\}$, what is $p(1 \mid \mathcal{D}) ? \frac{14}{24}, p(0 \mid \mathcal{D}) ? \frac{10}{24}$
when we assume the prior is $\operatorname{Beta}(\alpha=10, \beta=10)$

compare with prediction of maximum-likelihood: $p(x=1 \mid \mathcal{D})=\frac{N_{h}}{N}=1, p(x=1 \mid \mathcal{D})=0{ }_{5.4}$

Posterior predictive for Beta-Bernoulli

start from a Beta prior $p(\theta)=\operatorname{Beta}(\theta \mid \alpha, \beta)$ observe N_{h} heads and N_{t} tails, the posterior is $p(\theta \mid \mathcal{D})=\operatorname{Beta}\left(\theta \mid \alpha+N_{h}, \beta+N_{t}\right)$
Given this estimate of the parameters from training data, how can we predict the future?
$p(x=1 \mid \mathcal{D})=\int_{\theta} \operatorname{Bernoulli}(x=1 \mid \theta) \operatorname{Beta}\left(\theta \mid \alpha+N_{h}, \beta+N_{t}\right) \mathrm{d} \theta=\frac{\alpha+N_{h}}{\alpha+\beta+N}$
compare with prediction of maximum-likelihood: $p(x=1 \mid \mathcal{D})=\frac{N_{h}}{N}$ if we assume a uniform prior, the posterior predictive is $p(x=1 \mid \mathcal{D})=\frac{N_{h}+1}{N+2}$

Example: sequential Baysian updating
with uniform prior
$\left(N_{h}, N_{t}\right)$
a.k.a. add-one smoothing to avoid ruling out unseen cases with zero counts

Strength of the prior

with a strong prior we need many samples to really change the posterior
for Beta distribution $\alpha+\beta$ decides how strong the prior is: how confident we are in our prior
example as our dataset grows our estimate becomes more accurate

Maximum a Posteriori (MAP)

sometimes it is difficult to work with the posterior dist. over parameters
alternative: use the parameter with the highest posterior probability $p(\theta \mid \mathcal{D})$

MAP estimate $\quad \theta^{\text {MAP }}=\arg \max _{\theta} p(\theta \mid \mathcal{D})=\arg \max _{\theta} p(\theta) p(\mathcal{D} \mid \theta)$

compare with max-likelihood estimate (the only difference is in the prior term)

$$
\theta^{M L E}=\arg \max _{\theta} p(\mathcal{D} \mid \theta)
$$

example for the posterior $p(\theta \mid \mathcal{D})=\operatorname{Beta}\left(\theta \mid \alpha+N_{h}, \beta+N_{t}\right)$
MAP estimate is the mode of posterior $\quad \theta^{M A P}=\frac{\alpha+N_{h}-1}{\alpha+\beta+N_{h}+N_{t}-2}$

$$
\text { compare with MLE } \quad \theta^{M L E}=\frac{N_{h}}{N_{h}+N_{t}}
$$

$$
\text { they are equal for uniform prior } \alpha=\beta=1
$$

Categorical distribution

what if we have more than two categories (e.g., loaded dice instead of coin) instead of Bernoulli we have multinoulli or categorical dist.
\# categories
$\operatorname{Bernoulli}(x \mid \theta)=\theta^{x}(1-\theta)^{(1-x)} \quad \operatorname{Cat}(x \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{\mathbb{I}(x=k)}$

Categorical distribution

what if we have more than two categories (e.g., loaded dice instead of coin) instead of Bernoulli we have multinoulli or categorical dist.

$$
\begin{aligned}
& \text { where } \quad \sum_{k} \theta_{k}=1 \\
& \theta \text { belongs to probability simplex } \\
& p(x \mid \theta)= \begin{cases}\theta_{1} & x=1 \\
\theta_{2} & x=2 \\
\theta_{3} & x=3 \\
\theta_{4} & x=4 \\
\theta_{5} & x=5 \\
\theta_{6} & x=6\end{cases} \\
& \sum_{k}^{6} \theta_{k}=1 \\
& (1,0,0) \quad K=3
\end{aligned}
$$

Maximum likelihood for categorical dist.

likelihood $\quad p(\mathcal{D} \mid \theta)=\prod_{x \in \mathcal{D}} \operatorname{Cat}(x \mid \theta)=\prod_{x \in \mathcal{D}} \prod_{k=1}^{K} \theta_{k}^{\mathbb{I}(x=k)}=\prod_{k=1}^{K} \theta_{k}^{N_{k}}, N_{k}=\sum_{x \in \mathcal{D}} \mathbb{I}(x=k)$
log-likelihood $\quad \ell(\theta, \mathcal{D})=\sum_{x \in \mathcal{D}} \sum_{k} \mathbb{I}(x=k) \log \left(\theta_{k}\right)=\sum_{k} N_{k} \log \left(\theta_{k}\right)$
we need to solve $\frac{\partial}{\partial \theta_{k}} \ell(\theta, \mathcal{D})=0$ subject to $\sum_{k} \theta_{k}=1$ using Lagrange multipliers similar to the binary case, max-likelihood estimate is given by data-frequencies $\theta_{k}{ }^{M L E}=\frac{N_{k}}{N}$

example

Distribution of coronavirus (COVID-19) cases in Canada as of September 15, 2020, by

Dirichlet distribution

$(5,5,2)$

$\operatorname{Dir}(\theta,[.2, .2, .2])$
is a distribution over the parameters θ of a Categorical dist. is a generalization of Beta distribution to K categories this should be a dist. over prob. simplex $\sum_{k} \theta_{k}=1$

for $K=2$, it reduces to Beta distribution

Dirichlet-Categorical conjugate pair

Dirichlet dist. $\operatorname{Dir}(\theta \mid \alpha)=\frac{\Gamma\left(\sum_{k} \alpha_{k}\right)}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \prod_{k} \theta_{k}^{\alpha_{k}-1}$ is a conjugate prior for Categorical dist. $\operatorname{Cat}(x \mid \theta)=\prod_{k} \theta_{k}^{\mathbb{I}(x=k)}$
posterior \propto prior \times likelihood
prior $p(\theta)=\operatorname{Dir}(\theta \mid \alpha) \propto \prod_{k} \theta_{k}^{\alpha_{k}-1}$
likelihood $p(\mathcal{D} \mid \theta)=\prod_{k} \theta_{k}^{N_{k}} \quad$ we observe $\quad N_{1}, \ldots, N_{K}$ values from each category
posterior $\quad p(\theta \mid \mathcal{D})=\operatorname{Dir}(\theta \mid \alpha+\eta) \propto \prod_{k} \theta_{k}^{N_{k}+\alpha_{k}-1} \quad$ again, we add the real counts to pseudo-counts
posterior predictive $p(x=k \mid \mathcal{D})=\frac{\alpha_{k}+N_{k}}{\sum_{k^{\prime}} \alpha_{k^{\prime}}+N_{k^{\prime}}}$

$$
\text { MAP } \theta_{k}^{M A P}=\frac{\alpha_{k}+N_{k}-1}{\left(\sum_{k^{\prime}} \alpha_{k^{\prime}}+N_{k^{\prime}}\right)-K}
$$

Summary

in ML we often build a probabilistic model of the data $p(x ; \theta)$
learning a good model could mean maximizing the likelihood of the data

$$
\max _{\theta} \log p(\mathcal{D} \mid \theta) \left\lvert\, \begin{aligned}
& \text { sometimes closed form solution } \\
& \text { for more complex } \mathrm{p} \text {, we use numerical methods }
\end{aligned}\right.
$$

an alternative is a Bayesian approach:

- maintain a distribution over model parameters
- can specify our prior knowledge $p(\theta)$
- we can use Bayes rule to update our belief after new oabservation $p(\theta \mid \mathcal{D})$
- we can make predictions using posterior predictive $p(x \mid \mathcal{D})$
- can be computationally expensive (not in our examples so far)
a middle path is MAP estimate: $\max _{\theta} \log p(\mathcal{D} \mid \theta) p(\theta)$
- models our prior belief
- use a single point estimate and picks the model with highest posterior probability

