Applied Machine Learning

Maximum Likelihood and Bayesian Reasoning

Reihaneh Rabbany

COMP 551 (winter 2021) 1

Objectives

understand what it means to learn a probabilistic model of the data

- using maximum likelihood principle
- using Bayesian inference
 - prior, posterior, posterior predictive
 - MAP inference
 - Beta-Bernoulli conjugate pairs

Parameter estimation

a coin's head/tail outcome has a Bernoulli distribtion

$$ext{Bernoulli}(x| heta)= heta^x(1- heta)^{(1-x)}$$

reminder: Bernoulli random variable takes values of 0 or 1, e.g. head/tail in a coin toss $p(x| heta) = egin{cases} heta & x = 1 \ 1 - heta & x = 0 \end{cases}$

this is our **probabilistic model** of some head/tail IID data $\mathcal{D} = \{0, 0, 1, 1, 0, 0, 1, 0, 0, 1\}$

Objective: learn the model parameter heta

since we are only interested in the counts, we can also use **Binomial distribution**

Maximum likelihood

a coin's head/tail outcome has a **Bernoulli distribtion**

Bernoulli $(x|\theta) = \theta^x (1-\theta)^{(1-x)}$

this is our **probabilistic model** of some head/tail IID data $\mathcal{D} = \{0, 0, 1, 1, 0, 0, 1, 0, 0, 1\}$

Objective: learn the model parameter heta

Idea: find the parameter heta that maximizes the probability of observing ${\cal D}$

Maximizing log-likelihood

likelihood $L(\theta; \mathcal{D}) = \prod_{x \in \mathcal{D}} p(x; \theta)$

using product here creates extreme values

for 100 samples in our example, the likelihood shrinks below 1e-30

log-likelihood has the same maximum but it is well-behaved

$$\ell(heta;\mathcal{D}) = \log(L(heta;\mathcal{D})) = \sum_{x\in\mathcal{D}}\log(p(x; heta))$$

how do we find the max-likelihood parameter? $heta^* = rg \max_{ heta} \ell(heta; \mathcal{D})$

for some simple models we can get the **closed form solution** for complex models we need to use **numerical optimization**

Maximizing log-likelihood

log-likelihood $\ell(\theta; D) = \log(L(\theta; D)) = \sum_{x \in D} \log(\text{Bernoulli}(x; \theta))$

observation: at maximum, the derivative of $\ell(\theta; \mathcal{D})$ is zero **idea:** set the derivative to zero and solve for θ

example

max-likelihood for Bernoulli

$$egin{aligned} rac{\partial}{\partial heta} \ell(heta;\mathcal{D}) &= rac{\partial}{\partial heta} \sum_{x\in\mathcal{D}} \log \left(heta^x (1- heta)^{(1-x)}
ight) \ &= rac{\partial}{\partial heta} \sum_x x \log heta + (1-x) \log (1- heta) \ &= \sum_x rac{x}{ heta} - rac{1-x}{1- heta} = 0 \end{aligned}$$

which gives $\theta^{MLE} = \frac{\sum_{x \in D} x}{|D|}$ is simply the portion of heads in our dataset what is θ^{MLE} when $\mathcal{D} = \{0, 0, 1, 1, 0, 0, 1, 0, 0, 1\}$?

COMP 551 | Winter 2021

Bayesian approach

max-likelihood estimate does not reflect our uncertainty:

- e.g., $\theta^{MLE} = .2$ for both 1/5 heads and 1000/5000 heads
 - in which case are we more certain of the predicted θ ?

How can we quantify our uncertainty about our prediction?

Bayesian approach

How can we quantify our uncertainty about our prediction? capture it using a conditional probability distribution instead of a single best guess

Using the Bayesian inference approach

hidden

- $p(\theta)$ • we maintain a *distribution* over parameters
- after observing \mathcal{D} we update this distribution $p(\theta|\mathcal{D})$

prior

how to update degree of certainty given data? using **Bayes rule**

evidence: this is a normalization, marginal likelihood of data

previously denoted by $L(\theta; D)$

likelihood of the data

We can get a point estimate by collapsing this posterior distribution to a single point, i.e. the best guess

posterior

what do we believe about θ before any observation

prior

Bayes rule: example reminder

 $c = \{ \mathrm{yes}, \mathrm{no} \}$ patient having cancer?

 $x \in \{-,+\}$ observed test results, a single binary feature

prior: .1% of population has cancer p(yes) = .001ikelihood: p(+|yes) = .9 TP rate of the test (90%) $p(c = yes \mid x) = \frac{p(c=yes)p(x|c=yes)}{p(x)}$ posterior: p(yes|+) = .0177evidence: $p(+) = p(yes)p(+|yes) + p(no)p(+|no) = .001 \times .9 + .999 \times .05 = .05$

Conjugate Priors

in our coin example, we know the form of likelihood:

 $egin{aligned} \mathbf{p}(heta)? \ \mathbf{p}(heta|\mathcal{D})? \ \mathbf{p}(heta|\mathbf{h}) &= \prod_{x\in\mathcal{D}} ext{Bernoulli}(x; heta) = heta^{N_h}(1- heta)^{N_t} \end{aligned}$

To simplify the computation we want prior and posterior to have the **same form** (so up this gives us the following form $p(\theta|a,b) \propto \theta^a (1-\theta)^b$ this means there is a normalization constant that does not depend on θ

distribution of this form has a name, **Beta** distribution

we say Beta distribution is a conjugate prior to the Bernoulli likelihood

Beta distribution

Beta distribution has the following density

$$\operatorname{Beta}(\theta | \alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

$$\alpha, \beta > 0 \qquad \Gamma \text{ is the generalization of factorial to real number } \Gamma(a+1) = a\Gamma(a)$$

- Beta $(\theta | \alpha = \beta = 1)$ is uniform

mean of the distribution is $\mathbb{E}[heta] = rac{lpha}{lpha+eta}$

for $\alpha, \beta > 1$ the dist. is unimodal; its mode is $\frac{lpha - 1}{lpha + eta - 2}$

Beta distribution: more examples

Beta-Bernoulli conjugate pair

how to model probability of heads when we toss a coin N times

proportional × likelihood posterior \propto prior

prior $p(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$ $p(\theta) = \text{Beta}(\theta | \alpha, \beta)$ likelihood $p(\mathcal{D}| heta) = heta^{N_h}(1- heta)^{N_t}$

 $p(heta | \mathcal{D}) \propto heta^{lpha + N_h - 1} (1 - heta)^{eta + N_t - 1}$ posterior

 $L(\theta; \mathcal{D}) = \prod \text{Bernoulli}(N_h, N_t | \theta)$

product of Bernoulli likelihoods equivalent to Binomial likelihood

 $p(\theta|\mathcal{D}) = \text{Beta}(\theta|\alpha + N_h, \beta + N_t)$

 α,β are called *pseudo-counts*

their effect is similar to imaginary observation of heads (α) and tails (β)

Effect of more data

with few observations, prior has a high influence as we increase the number of observations $N = |\mathcal{D}|$ the effect of prior diminishes the likelihood term dominates the posterior

example prior $Beta(\theta|10, 10)$

plot of the posterior density with **n** observations

 $p(heta | \mathcal{D}) \propto heta^{10+H} (1- heta)^{10+N-H}$

Posterior predictive

our goal was to estimate the parameters (heta) so that we can make predictions

what if we use the maximum likelihood estimate for the best parameter, θ^{MLE} , and plug it in the $p(x|\theta)$ to make the prediction?

Example:

if we see four heads in a row, what is the probability of seeing a tail next?

if
$$\mathcal{D}=\{1,1,1,1\}$$
, what is $heta^{MLE}$? 1.0
 $p(0| heta)= heta^0(1- heta)^{(1-0)}=1- heta$ $\Rightarrow 1- heta^{MLE}=0.0$

Next, let's use the posterior distribution we learn through Bayesian inference

Posterior predictive

our goal was to estimate the parameters (heta) so that we can make predictions

now we have a (posterior) **distribution** over parameters, $p(\theta|D)$, rather than a single θ^{MLE} θ^{MLE} only gives a single best guess based on that parameter, $p(x|\theta)$

To make predictions, we calculate the average prediction over all possible values of θ

$$p(x|\mathcal{D}) = \int_{ heta} p(heta|\mathcal{D}) p(x| heta) \mathrm{d} heta$$

for each possible θ , weight the prediction by the posterior probability of that parameter being true

5.2

Posterior predictive

our goal was to estimate the parameters (heta) so that we can make predictions

now we have a (posterior) **distribution** over parameters, $p(\theta|\mathcal{D})$

To make predictions, we calculate the average prediction over all possible values of θ

if we see four heads in a row, what is the probability of seeing a tail next? if $\mathcal{D} = \{1, 1, 1, 1\}$, what is $p(0|\mathcal{D})$? depends on our prior belief

when the strenght of prior gets close to zero the prediction becomes similar to MLE

Posterior predictive for Beta-Bernoulli

start from a Beta prior $p(\theta) = \text{Beta}(\theta | \alpha, \beta)$

observe N_h heads and N_t tails, the posterior is $p(\theta|\mathcal{D}) = \text{Beta}(\theta|\alpha + N_h, \beta + N_t)$

Given this estimate of the parameters from training data, how can we predict the future?

what is the probability that the next coin flip is head?

$$p(x = 1|\mathcal{D}) = \int_{ heta}^{\text{marginalize over } heta} \operatorname{Bernoulli}(x = 1| heta)\operatorname{Beta}(heta|lpha + N_h, eta + N_t)\operatorname{d} heta = \int_{ heta} heta\operatorname{Beta}(heta|lpha + N_h, eta + N_t)\operatorname{d} heta = rac{lpha + N_h}{lpha + eta + N}$$

if we see four heads in a row, what is the probability of seeing a tail next? Example if $\mathcal{D} = \{1, 1, 1, 1\}$, what is $p(1|\mathcal{D})$? $\frac{14}{24}$, $p(0|\mathcal{D})$? $\frac{10}{24}$ when we assume the prior is $Beta(\alpha = 10, \beta = 10)$ compare with prediction of maximum-likelihood: $p(x = 1 | \mathcal{D}) = \frac{N_h}{N} = 1, \ p(x = 1 | \mathcal{D}) = 0$

2.5

10 2.0

0.2

 $p(1|\theta)$

p(018)

p(1|D)

p(0) D

Posterior predictive for Beta-Bernoulli

start from a Beta prior $p(\theta) = \text{Beta}(\theta | \alpha, \beta)$ observe N_h heads and N_t tails, the posterior is $p(\theta|\mathcal{D}) = \text{Beta}(\theta|\alpha + N_h, \beta + N_t)$ Given this estimate of the parameters from training data, how can we predict the future? $p(x=1|\mathcal{D}) = \int_{ heta} ext{Bernoulli}(x=1| heta) ext{Beta}(heta|lpha+N_h,eta+N_t) ext{d} heta = rac{lpha+N_h}{lpha+eta+N_t}$ **Example:** compare with prediction of maximum-likelihood: $p(x=1|\mathcal{D})=rac{N_h}{N}$

if we assume a uniform prior, the posterior predictive is $p(x=1|\mathcal{D}) = rac{N_h+1}{N+2}$

sequential Baysian updating with uniform prior (N_h, N_t)

Laplace smoothing

a.k.a. add-one smoothing to avoid ruling out unseen cases with zero counts

Strength of the prior

with a **strong prior** we need many samples to really change the posterior for Beta distribution $\alpha + \beta$ decides how strong the prior is: how confident we are in our prior

example: PGM book by Koller & Friedman, figure 17.5

. 6

Maximum a Posteriori (MAP)

sometimes it is difficult to work with the posterior dist. over parameters

alternative: use the parameter with the highest posterior probability $p(\theta|\mathcal{D})$

 $\mathsf{MAP} \ \mathsf{estimate} \quad \ \theta^{MAP} = \arg \max_{\theta} p(\theta | \mathcal{D}) = \arg \max_{\theta} p(\theta) p(\mathcal{D} | \theta)$

compare with max-likelihood estimate (the only difference is in the prior term)

 $heta^{MLE} = rg\max_{ heta} p(\mathcal{D}| heta)$

examplefor the posterior $p(\theta|\mathcal{D}) = \text{Beta}(\theta|\alpha + N_h, \beta + N_t)$ MAP estimate is the **mode** of posterior $\theta^{MAP} = \frac{\alpha + N_h - 1}{\alpha + \beta + N_h + N_t - 2}$ compare with MLE $\theta^{MLE} = \frac{N_h}{N_h + N_t}$ they are equal for uniform prior $\alpha = \beta = 1$

Categorical distribution

what if we have more than two categories (e.g., loaded dice instead of coin) instead of Bernoulli we have multinoulli or **categorical** dist.

Categorical distribution

what if we have more than two categories (e.g., loaded dice instead of coin) instead of Bernoulli we have multinoulli or **categorical** dist.

Maximum likelihood for categorical dist.

 $\mathsf{likelihood} \qquad p(\mathcal{D}|\theta) = \prod_{x \in \mathcal{D}} \mathsf{Cat}(x|\theta) = \prod_{x \in \mathcal{D}} \prod_{k=1}^{K} \theta_k^{\mathbb{I}(x=k)} = \prod_{k=1}^{K} \theta_k^{N_k} \,\,,\,\, N_k = \sum_{x \in \mathcal{D}} \mathbb{I}(x=k)$

log-likelihood $\ell(\theta, \mathcal{D}) = \sum_{x \in \mathcal{D}} \sum_k \mathbb{I}(x = k) \log(\theta_k) = \sum_k N_k \log(\theta_k)$

we need to solve $\frac{\partial}{\partial heta_k} \ell(heta, \mathcal{D}) = 0$ subject to $\sum_k heta_k = 1$ using Lagrange multipliers

similar to the binary case, max-likelihood estimate is given by data-frequencies $\theta_k^{MLE} = rac{N_k}{N}$

Dirichlet distribution

is a distribution over the parameters θ of a Categorical dist. is a generalization of Beta distribution to K categories this should be a dist. over prob. simplex $\sum_k \theta_k = 1$

for K=2, it reduces to Beta distribution

Dirichlet-Categorical conjugate pair

Dirichlet dist. $\operatorname{Dir}(\theta|\alpha) = \frac{\Gamma(\sum_k \alpha_k)}{\prod_k \Gamma(\alpha_k)} \prod_k \theta_k^{\alpha_k - 1}$ is a conjugate prior for Categorical dist. $\operatorname{Cat}(x|\theta) = \prod_k \theta_k^{\mathbb{I}(x=k)}$

posterior \propto prior \times likelihood

$$\begin{array}{ll} \mbox{prior} & p(\theta) = {\rm Dir}(\theta | \alpha) \propto \prod_k \theta_k^{\alpha_k - 1} & \eta \\ & & & & \eta \\ & & & & & & likelihood & p(\mathcal{D} | \theta) = \prod_k \theta_k^{N_k} & \mbox{we observe} & N_1, \dots, N_K \\ & & & & & & & n \\ \hline & & & & & p(\theta | \mathcal{D}) = {\rm Dir}(\theta | \alpha + \eta) \propto \prod_k \theta_k^{N_k + \alpha_k - 1} & \mbox{again, we add the real counts to pseudo-counts} \end{array}$$

$$\begin{array}{ll} \text{posterior predictive} \quad p(x=k|\mathcal{D}) = \frac{\alpha_k + N_k}{\sum_{k'} \alpha_{k'} + N_{k'}} \\\\ \hline \text{MAP} \quad \theta_k^{MAP} = \frac{\alpha_k + N_k - 1}{(\sum_{k'} \alpha_{k'} + N_{k'}) - K} \end{array}$$

Summary

in ML we often build a probabilistic model of the data $p(x; \theta)$ learning a good model could mean **maximizing the likelihood** of the data $\max_{\theta} \log p(\mathcal{D}|\theta) \Big|_{\text{for more complex p, we use numerical methods}}^{\text{sometimes closed form solution}}$

an alternative is a **Bayesian approach**:

- maintain a **distribution** over model parameters
- can specify our **prior** knowledge $p(\theta)$
- we can use **Bayes rule** to update our belief after new oabservation $p(\theta|\mathcal{D})$
- we can make predictions using **posterior predictive** $p(x|\mathcal{D})$
- can be computationally **expensive** (not in our examples so far)

a middle path is **MAP estimate**: $\max_{\theta} \log p(\mathcal{D}|\theta)p(\theta)$

- models our **prior** belief
- use a single point estimate and picks the model with highest posterior probability