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Motivation

from 2020 Kaggle's survey on the state of
Machine Learning and Data Science, 

you can read the full version here

Today's topic is highly
practical 
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https://www.kaggle.com/kaggle-survey-2020


Learning objectives

bootstrap for uncertainty estimation
bagging (bootstrap aggregation) for variance reduction

random forests
boosting

AdaBoost
gradient boosting
relationship to L1 regularization
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models for different datasets f̂D

variance:
how change of dataset affects
the prediction

bias:
how average over all
datasets differs from the
regression function

x x

y

the average model E[ ]f̂D

true modelf

bias is the difference
(in L2 norm) between
two curves

variance is the
average difference
(in squared L2
norm) between
these curves and
their average
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Reminder: bias vs. variance

E[(f(x) − E [ (x)]) ]D f̂D
2E[( (x) −f̂D E [ (x)]) ]D f̂D

2

y



the expected loss (test
error) increases with
both bias and variance

Reminder: bias vs. variance

increasing variance
increasing bias

average training error

average test error

model complexity

simple or
weak models
seem to do
good on
average and
have lower
variance
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Reducing Bias & variance
we saw a trade-off between bias (simplicity) and variance (complexity)

reduce the variance of a model w/o increasing its bias?

average multiple models trained on subsets of the data

Bagging 

reduce the bias of a model w/o increasing its variance?

reduce the bias of (simple models) by adding them in steps

Boosting
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Bagging (Bootstrap aggregation)
  

train a model       on each of these bootstrap datasets (called bootstrap samples)

given the dataset                                    
     

D = {(x , y )}(n) (n)
n=1
N

subsample with replacement B datasets of size N

D =b {(x , y )} , b =(n,b) (n,b)
n=1
N 1,… ,B

aggregate the predictions of these models (Bootstrap aggregation)

(non-parametric) bootstrapping

bootstrapping can also use to produce a measure of uncertainty in predictions

(x) =f̂ (x)
B
1 ∑b f̂ b

f̂ b
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a simple approach to estimate the uncertainty in prediction

train a model on each of these bootstrap datasets
(called bootstrap samples)

given the dataset                                          D = {(x , y )}(n) (n)
n=1
N

subsample with replacement B datasets of size N

D =b {(x , y )} , b =(n,b) (n,b)
n=1
N 1,… ,B

produce a measure of uncertainty from these models

for model parameters
for predictions

non-parametric bootstrap

sample the same size as
the original training set D

w ,1 ŷ1 w ,2 ŷ2 w ,B ŷBw ,3 ŷ3

D1 D2 D3 DB
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Bootstrap for uncertainty estimation



recall our running example with nonlinear Gaussian bases (N=100 training data points)example

y =(n) sin(x ) +(n) cos( ) +∣x ∣(n) ϵ

before adding noise

our fit to all datapoints using 10 Gaussian bases

noise

  
Bootstrap for uncertainty estimation
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using B=500 bootstrap samples

gives a measure of uncertainty of the parameters

each color is a different weight wd

also gives a measure of uncertainty of the predictions

  
Bootstrap for uncertainty estimation

example recall our running example with nonlinear Gaussian bases (N=100 training data points)

the red lines are 5% and 95% quantiles
(for each point we can get these across bootstrap model predictions) 12



= Var(z ) +1 Var(z ) +2 2Cov(z , z )1 2

= E[z ] +1
2 E[z ] +2

2 E[2z z ] −1 2 E[z ] −1
2 E[z ] −2

2 2E[z ]E[z ]1 2

  
Bagging

Var(z +1 z ) =2 E[(z +1 z ) ] −2
2 E[z +1 z ]2 2

why using average predictions reduces variance?

= E[z +1
2 z +2

2 2z z ] −1 2 (E[z ] +1 E[z ])2 2

variance of the sum of random variables

for uncorrelated variables this term is zero

  
Bagging (Bootstrap aggregation)

Var( z ) =∑b b Var(z )∑b b
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Var( z ) =B
1 ∑b b Var( z ) =B2

1 ∑b b Bσ =B2
1 2 σB

1 2

variance of the sum of  uncorrelated random variablesz … z1 B

variance of the average of  uncorrelated random variables, all with variance of z … z1 B σ2



for regression

so the Bagging reduces variance
(in reality, predictions are not uncorrelated)

(x) =f̂ (x)
B
1 ∑b f̂ b

prediction using bootstrap sample b

infographics from: domo.com

  
Bagging

averaging uncorrelated variables reduces the variance
of our model by a factor of B (number of bootstraps)

  
Bagging (Bootstrap aggregation)

Example
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for classification

wisdom of crowds

bagging produces a better classifier!
crowds are wise when

individuals are better than random
votes are uncorrelated

we cannot use mean of classifiers, use voting (i.e., mode)

infographics from: domo.com

 are IID Bernoulli random variables with mean  ( ), then 
  as B grows

z ,… , z   ∈1 B {0, 1} μ = .5 + ϵ ϵ > 0

P ( z >B
1 ∑b b .5) → 1

i.e., even if individual predictions are very noisy, average prediction can be accurate

  
Bagging (Bootstrap aggregation)

e.g. with 10K classifiers that are each only slightly better
than chance (0.51percent accurate), we get an overall
accuracy of 0.97
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Bagging decision trees
  

example

setup

synthetic dataset
5 correlated features
1st feature is a noisy predictor of the label

B

voting for the most probably class
averaging probabilities

Bootstrap samples create different decision trees (due to high variance of decision trees)

compared to decision trees, no longer interpretable!
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Random forests
  

further reduce the correlation between decision trees

feature sub-sampling
only a random subset of features are available for split at each step

further reduce the dependence between decision trees

Dmagic number?
this is a hyper-parameter, can be optimized using CV

Out Of Bag (OOB) samples:

the instances not included in a bootsrap dataset can be used for validation
simultaneous validation of decision trees in a forest
no need to set aside data for cross validation
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Spam detection
  

N=4601 emails
binary classification task: spam - not spam
D=57 features:

48 words: percentage of words in the email that match these words
e.g., business,address,internet, free, George (customized per user)

6 characters: again percentage of characters that match these
ch; , ch( ,ch[ ,ch! ,ch$ , ch#

average, max, sum of length of uninterrupted sequences of capital letters:
CAPAVE, CAPMAX, CAPTOT

average value of these features in the spam and non-spam emails

an example of
feature engineering

Dataset

example
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decision tree after pruning number of leaves (17) in optimal pruning
decided based on cross-validation error

test error

cv error

misclassification rate on test data

  
Spam detection example
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Bagging and Random Forests do much better
than a single decision tree!

Out Of Bag (OOB) error can be used for parameter tuning
(e.g., size of the forest)

  
Spam detection example
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Bootstrap is a powerful technique to get uncertainty estimates
Bootstrap aggregation (Bagging) can reduce the variance of unstable models
Random forests:

Bagging + further de-corelation of features at each split
OOB validation instead of CV
destroy interpretability of decision trees
perform well in practice
can fail if only few relevant features exist (due to feature-sampling)

Summary so far...

reduce the bias of a model w/o increasing its variance?
reduce the bias of (simple models) by adding them in steps

Boosting
Next:En

se
m

bl
e 

le
ar

ni
ng

train independently
train sequentially
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Adaptive bases
  

several methods can be classified as learning these bases adaptively

f(x) = w ϕ (x; v )∑d d d d

fixed set of bases in f(x) = w ϕ (x)∑d d d

Gaussian bases example

decision trees
generalized additive models
neural networks
boosting

in boosting each basis is a classifier or regression function (weak learner, or base learner)
create a strong learner by sequentially combining weak learners
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model f(x) = w ϕ(x; v )∑t=1
T {t} {t} a simple model, such as decision stump (decision tree with one node)

cost J({w , v } ) ={t} {t}
t L(y , f(x ))∑n=1

N (n) (n)

e.g. L2 loss or hinge loss

optimizing this cost is difficult given the form of f

optimization idea add one weak-learner in each stage t, to reduce the error of previous stage

f (x) ={t} f (x ) +{t−1} (n) w ϕ(x ; v ){t} (n) {t}

2. add it to the current model

v ,w ={t} {t} argmin L(y , f (x ) +v,w ∑n=1
N (n) {t−1} (n) wϕ(x ; v))(n)

1. find the best weak learner

Forward stagewise additive modelling

25



cost

argmin (y −d,wd 2
1 ∑n=1

N (n) (f (x ) +{t−1} (n) w x ))d d

(n)
2

using L2 loss for regression

at stage t

  
loss & linear modellingL2

consider weak learners that are individual features ϕ (x) ={t} w x{t}
d{t}model

residual r(n)

optimization optimal weight for each d is w =d
x∑

n d

(n) 2
x r∑

n d

(n)
d

(n)

pick the feature that most significantly reduces the residual

f (x) ={t} αw x∑t d{t}
{t}

d{t}the model at time-step t:

using a small      helps with test errorα

27
is this related to L1-regularized linear regression?

(y −2
1 f(x))2

optional



example

using small learning rate                   L2 Boosting has a similar regularization path to lasso

boosting

α = .01

we can view boosting as doing feature (base learner) selection in exponentially large spaces (e.g., all trees of size K)
the number of steps t plays a similar role to (the inverse of) regularization hyper-parameter

∣w ∣∑d d t

lasso

wd

{t}

at each time-step only one feature           is updated / addedd{t}

  
loss & linear modellingL2

optional
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Exponential loss & AdaBoost
  

loss functions for binary classification

L(y, f(x)) = log (1 + e )−yf(x)log-loss
(aka cross entropy loss or binomial deviance)

y ∈ {−1,+1}

predicted label is =ŷ sign(f(x))

misclassification loss
(0-1 loss)

L(y, f(x)) = I(yf(x) > 0)

L(y, f(x)) = max(0, 1 − yf(x))Hinge loss
support vector loss

yet another loss function is exponential loss L(y, f(x)) = e−yf(x)

note that the loss grows faster than the other surrogate losses (more sensitive to outliers)

useful property when working with additive models:

L(y, f (x) +{t−1} w ϕ(x, v )) ={t} {t} L(y, f (x)) ⋅{t−1} L(y,w ϕ(x, v )){t} {t}

treat this as a weight q for an instance
instances that are not properly classified before receive a higher weight 30

optional



Exponential loss & AdaBoost
  

J({w , v } ) ={t} {t}
t L(y , f (x ) +∑n=1

N (n) {t−1} (n) w ϕ(x , v )) ={t} (n) {t} q L(y ,w ϕ(x , v ))∑n
(n) (n) {t} (n) {t}

cost

L(y , f (x ))(n) {t−1} (n)loss for this instance at previous stage

using exponential loss

= e q I(y =w{t} ∑n
(n) (n)  ϕ(x , v )) +(n) {t} e q I(y =−w{t} ∑n

(n) (n) ϕ(x , v ))(n) {t}

discrete AdaBoost: assume this is a simple classifier, so its output is +/- 1

J({w , v } ) ={t} {t}
t q e∑n

(n) −y w ϕ(x ,v )(n) {t} (n) {t}

objective is to find the weak learner minimizing the cost aboveoptimization

= e q +−w{t} ∑n
(n) (e −w{t} e ) q I(y =−w{t} ∑n

(n) (n)  ϕ(x , v ))(n) {t}

assuming                     the weak learner should minimize this cost
this is classification with weighted intances

w ≥{t} 0does not depend on
the weak learner 31

optional



Exponential loss & AdaBoost
  

= e q +−w{t} ∑n
(n) (e −w{t} e ) q I(y =−w{t} ∑n

(n) (n)  ϕ(x , v ))(n) {t}

assuming                     the weak learner should minimize this cost
this is classification with weighted instances
this gives

w ≥{t} 0does not depend on
the weak learner

J({w , v } ) ={t} {t}
t q L(y ,w ϕ(x , v ))∑n

(n) (n) {t} (n) {t}cost

still need to find the optimal w{t}

v{t}

setting                          gives=∂w{t}
∂J 0 w ={t} log2

1
ℓ{t}
1−ℓ{t} weight-normalized misclassification error

ℓ ={t}
q∑

n
(n)

q I(ϕ(x ;v )=y )∑
n

(n) (n) {t}  (n)

we can now update instance weights q for next iteration
(multiply by the new loss)

q =(n),{t+1} q e(n),{t} −w y ϕ(x ;v ){t} (n) (n) {t}

since weak learner is better than chance                      and so w ≥{t} 0ℓ <{t} .5

32
since w > 0, the weight q of misclassified points increase and the rest decrease

optional



Exponential loss & AdaBoost
  

overall algorithm for discrete AdaBoost

 
 
 
 
 
return

initialize 
 
for t=1:T 
 
     fit the simple classifier        to the weighted dataset 
 
     

w :{t} = log2
1

ℓ{t}
1−ℓ{t}

ℓ :{t} =
q∑

n
(n)

q I(ϕ(x ;v )=y )∑
n

(n) (n) {t}  (n)

q :(n) = q e ∀n(n) −w y ϕ(x ;v ){t} (n) (n) {t}

q :(n) = ∀n
N
1

ϕ(x, v ){t}

f(x) = sign( w ϕ(x; v )))∑t
{t} {t}

w ϕ(x; v ){1} {1}

w ϕ(x; v ){2} {2}

w ϕ(x; v ){3} {3}

w ϕ(x; v ){T} {T}

f(x) = sign( w ϕ(x; v ))∑t
{t} {t}

optional
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AdaBoost
  

example

w ϕ(x; v ){1} {1}

w ϕ(x; v ){2} {2}

w ϕ(x; v ){3} {3}

w ϕ(x; v ){T} {T}

=ŷ sign( w ϕ(x; v ))∑t
{t} {t}each weak learner is a decision stump (dashed line)

t = 1 t = 2 t = 3

t = 6 t = 10 t = 150

green is the decision boundary of f {t}
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q := [ , , , , , ]6
1
6
1
6
1
6
1
6
1
6
1

 
 
 
 
 
return

initialize 
 
for t=1:T 
 
     fit the simple classifier        to the weighted dataset 
 
     

w :{t} = log2
1

ℓ{t}
1−ℓ{t}

ℓ :{t} =
q∑

n
(n)

q I(ϕ(x ;v )=y )∑
n

(n) (n) {t}  (n)

q :(n) = q e ∀n(n) −w y ϕ(x ;v ){t} (n) (n) {t}

q :(n) = ∀n
N
1

ϕ(x, v ){t}

f(x) = sign( w ϕ(x; v )))∑t
{t} {t}

ℓ = =
q∑

6
1

6
1

w = log( ) =2
1

6
1

1− 6
1

.5 log(5) ≈ 0.8

q := [ , , , , , ]
6 5
1

6 5
1

6
5

6 5
1

6 5
1

6 5
1

Discrete AdaBoost Algorithm
Example

ℓ = =
q∑

6 5
1

10
1

w = log( ) =2
1

10
1

1− 10
1

.5 log(9) ≈ 1.1

35

ϕ ={1} [1, 1, 1,−1, 1,−1]

ϕ ={2} [1, 1,−1,−1,−1,−1]

f = [sign(.8 + 1.1), sign(.8 + 1.1), sign(.8 − 1.1), sign(−.8 − 1.1), sign(.8 − 1.1), sign(−.8 − 1.1)]

optional



application: Viola-Jones face detection
  

The first face detector
each feature is a weak learner, Haar features

only compares the total intensity in rectangular pieces of the
image, computationally efficient

 
AdaBoost picks one feature at a time (label: face/no-face)

 

fast enough for real-time (object) detection

image credit: David Lowe

optional
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Boosting
model f(x) = w ϕ(x; v )∑t=1

T {t} {t} a simple model, such as decision stump (decision tree with one node)

cost J({w , v } ) ={t} {t}
t L(y , f(x ))∑n=1

N (n) (n)

optimizing this cost is difficult given the form of f

f (x) ={t} f (x ) +{t−1} (n) w ϕ(x ; v ){t} (n) {t}

2. add it to the current model

v ,w ={t} {t} argmin L(y , f (x ) +v,w ∑n=1
N (n) {t−1} (n) wϕ(x ; v))(n)

1. find the best weak learner

L(y, f(x)) = e−yf(x)

L(y, f(x)) = (y −2
1 f(x))2

AdaBoost

L2Boosting General algorithm
for any loss ?

optional
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let f ={t} [f (x ),… , f (x )]{t} (1) {t} (N) ⊤
y = [y ,… , y ](1) (N) ⊤and true labels

=f̂ argmin L(f ,y)f

ignoring the structure of f
if we use gradient descent to minimize the loss

write      as a sum of stepsf̂ =f̂ f ={T} f −{0} w g∑t=1
T {t} {t}

w ={t} argmin L(f −w
{t−1} wg ){t}

we can look for the optimal step size
optional

L(f ,y)∂f
∂ {t−1}

gradient vector
its role is similar to residual

idea

39

fit the weak learner to the gradient of the cost

Gradient boosting

f ={t} f −{t−1} w g{t} {t}

optional



let f ={t} [f (x ),… , f (x )]{t} (1) {t} (N) ⊤
y = [y ,… , y ](1) (N) ⊤and true labels

=f̂ argmin L(f ,y)f

ignoring the structure of f
if we use gradient descent to minimize the loss

write      as a sum of stepsf̂ =f̂ f ={T} f −{0} w g∑t=1
T {t} {t}

so far we treated f as a parameter vector of input size, to generalize:

w ={t} argmin L(f −w
{t−1} wg ){t}

we can look for the optimal step size

L(f ,y)∂f
∂ {t−1}

gradient vector
its role is similar to residual

40

we are fitting the gradient using L2 loss regardless of the original loss function

fit the weak-learner to negative of the gradient v ={t} argmin ∣∣ϕ −v 2
1

v (−g)∣∣2
2

ϕ =v [ϕ(x ; v),… ,ϕ(x ; v)](1) (N) ⊤

v ={t} argmin ((−g) −v ∑n ϕ(x , v))(n) 2

optional

idea fit the weak learner to the gradient of the cost

Gradient boosting



 

 

initialize         using a base learner      
 
for t=1:T 
 
     
     calculate the gradient  
 
      
     fit a weak learner to negative of gradient using 

     find the optimal step size  
 
 
     Update the function  

return 

f (x){0}

f (x) ={t} f (x) +{t−1} w ϕ(x, v ){t} {t}

f (x){T}

decide T using a validation set (early stopping)

g =(n),{t} L(f (x ), y(x ))∂f (x ){t−1} (n)
∂ {t−1} (n) (n)

v ={t} argmin (g +v ∑n
(n),{t} ϕ(x , v))(n) 2

L(y, f(x)) = (y −2
1 f(x)) ⇒2 g = y − f(x) L2Boosting

We can use different loss functions for example:

w ={t} argmin L(f (x ) −w ∑n
{t−1} (n) wg )(n),{t}

argmin L(y ,ϕ(x , v))v ∑n
(n) (n)

optional, can use fixed rate as well
 

optional

Gradient boosting
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Gradient tree boosting
   apply gradient boosting to CART (classification and regression trees)

 

 

initialize      to predict a constant 
 
for t=1:T 
 
     calculate the negative of the gradient  
 
     fit a regression tree to       and produce regions

     re-adjust predictions per region

     update 
 
return 

f {0}

f (x) ={t} f (x) +{t−1} w I(x ∈∑k=1
K

k R )k

r = − L(f ,y)∂f
∂ {t−1}

X, r
N ×D N

R ,… ,R1 K

w =k argmin L(y , f (x ) +w ∑x ∈R(n)
k

(n) {t−1} (n) w)

f (x){T}

refinement over the generic
algorithm, re-adjust the weak
learner

stochastic gradient boosting

combines bootstrap and boosting
use a subsample at each iteration above
similar to stochastic gradient descent

α
using a small learning rate here improves test error (shrinkage)

shallow trees of K = 4-8 leaf usually
work well as weak learners

decide T using a validation set (early stopping)

a.k.a MART: multiple additive regression trees

XGBoost (extreme gradient boosting) is a widely
used variation, which has some additional tricks

optional
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Gradient tree boosting
  

example

features are samples from standard Gaussianx ,… ,x1
(n)

10
(n)

recall the synthetic example:

since sum of features are used in prediction using stumps work best

Gradient tree boosting (using log-loss) works better than Adaboost

y =(n) I( x >∑d d
(n)2 9.34)label

N=2000 training examples, (~1000+,~1000-) 

Boosting with different
sized trees

Entropy (a.k.a deviance)
for the trees loss

optional
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Gradient tree boosting
  example

see the interactive demo: https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

optional

44

https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html


Summary: Ensemble Methods
bagging (reduce variance)

independent models

Random forests: produce models with minimal correlation
destroy interpretability of decision trees
perform well in practice
can fail if only a few relevant features exist (due to feature-sampling)

random forests and (gradient) boosting generally perform very well

use their average prediction
OOB validation instead of CV

boosting (reduces the bias of the weak learner)
models are added in steps
a single cost function is minimized
for exponential loss: interpret as re-weighting the instance (AdaBoost)
gradient boosting: fit the weak learner to the negative of the gradient
interpretation as L1 regularization for "weak learner"-selection

45


