
Comp 511: Network Science, Winter 2025

Patterns
Analysis of complex interconnected data
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● First assignment is released
• http://www.reirab.com/Teaching/NS25/Assignment_1.pdf
• Join a Group in Mycourses & Submit the assignment through Mycourses
• Late policy for assignments, 2^k% of the grade will be deducted per k days of delay.

● Use Ed discussion
• Ask questions
• Share tips & discuss the assignment 

Quick Notes

http://www.reirab.com/Teaching/NS25/Assignment_1.pdf
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● Sparsity Pattern
● Scale Free Pattern

○ Power-law degree distribution 
○ Fitting a power-law
○ Preferential attachment and AB model

● Assortativity Pattern 
● Transitivity Pattern 

○ powers of A & counting triangles
● Small world Pattern 

○ Shortest path 
● How to pattern?

Outline
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marginals of A => degree sequence 

For undirected graphs: we have   if there is an 
edge between  and , and degree of each node is:

For directed graphs,  if there is an edge from node  to , 
and in/out degrees of each node are:  

  ,   

Aij = Aji = 1
i j

di = ∑
j

Aij

Aij = 1 j i

din
i = ∑

j

Aij dout
i = ∑

j

Aji

Adjacency Matrix: marginals

0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 1 0 0 0 0 0 0 0 0 1 3
1 1 0 1 1 0 0 0 0 0 0 0 0 3
2 1 1 0 0 0 0 0 0 0 0 0 0 2
3 0 1 0 0 1 1 0 0 0 0 0 0 3
4 0 0 0 1 0 1 1 0 0 0 0 0 3
5 0 0 0 1 1 0 0 0 0 0 0 0 2
6 0 0 0 0 1 0 0 1 1 0 0 0 3
7 0 0 0 0 0 0 1 0 1 0 0 0 2
8 0 0 0 0 0 0 1 1 0 0 1 0 3
9 0 0 0 0 0 0 0 0 0 0 1 1 2
10 0 0 0 0 0 0 0 0 1 1 0 1 3
11 1 0 0 0 0 0 0 0 0 1 1 0 3

3 3 2 3 3 2 3 2 3 2 3 3

0 1 2 3 4 5 6 7 8 9 10 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 1
2 1 1 0 0 0 0 0 0 0 0 0 0 2
3 0 1 0 0 0 0 0 0 0 0 0 0 1
4 0 0 0 1 0 0 0 0 0 0 0 0 1
5 0 0 0 1 1 0 0 0 0 0 0 0 2
6 0 0 0 0 1 0 0 1 1 0 0 0 3
7 0 0 0 0 0 0 1 0 0 0 0 0 1
8 0 0 0 0 0 0 1 1 0 0 0 0 2
9 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 1 1 0 0 2
11 1 0 0 0 0 0 0 0 0 1 1 0 3

3 2 0 2 2 0 2 2 2 2 1 0

in
-d

eg
re

es

out-degrees

de
gr

ee
s

degrees
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marginals of A => degree sequence 

For undirected graphs: we have   if there is an edge 
between  and , and degree of each node is:

What is  ?

Aij = Aji = 1
i j

di = ∑
j

Aij

∑
ij

Aij

Adjacency Matrix: marginals

0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 1 0 0 0 0 0 0 0 0 1 3
1 1 0 1 1 0 0 0 0 0 0 0 0 3
2 1 1 0 0 0 0 0 0 0 0 0 0 2
3 0 1 0 0 1 1 0 0 0 0 0 0 3
4 0 0 0 1 0 1 1 0 0 0 0 0 3
5 0 0 0 1 1 0 0 0 0 0 0 0 2
6 0 0 0 0 1 0 0 1 1 0 0 0 3
7 0 0 0 0 0 0 1 0 1 0 0 0 2
8 0 0 0 0 0 0 1 1 0 0 1 0 3
9 0 0 0 0 0 0 0 0 0 0 1 1 2
10 0 0 0 0 0 0 0 0 1 1 0 1 3
11 1 0 0 0 0 0 0 0 0 1 1 0 3

3 3 2 3 3 2 3 2 3 2 3 3

de
gr

ee
s

degrees

∑ di = 2E twice the number of edges N = 12, E = 16

Mean degree:   d̄ =
1
N ∑

ij

Aij =
1
N ∑

i

di
d̄ = 2.6

Density:  ρ =
∑ij Aij

N(N − 1)
=

1
N

d̄
ρ = 0.24
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mean degree << N-1 
(or E << Emax)

WWW (Stanford-Berkeley):  N=319,717 mean degree=9.65
Social networks (LinkedIn): N=6,946,668 mean degree=8.87
Communication (MSNIM): N=242,720,596 mean degree=11.1
Co-authorships (DBLP):  N=317,080 mean degree=6.62
Internet (AS-Skitter): N=1,719,037 mean degree=14.91
Roads (California): N=1,957,027 mean degree=2.82
Proteins (S. Cerevisiae):  N=1,870 mean degree=2.39 

(Source: Leskovec et al., Internet Mathematics, 2009)

Adjacency matrix is filled with zeros!

(Density of the matrix: WWW=1.51*10-5, MSNIM= 2.27*10-8)

Implications? 

Real-world networks are sparse

From Leskovec’s slides

Use sparse representations, density is not very informative!

http://snap.stanford.edu/class/cs224w-2017/handouts.html
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● Sparsity Pattern
● Scale Free Pattern

○ Power-law degree distribution 
○ Fitting a power-law
○ Preferential attachment and AB model

● Assortativity Pattern 
● Transitivity Pattern 

○ powers of A & counting triangles
● Small world Pattern 

○ Shortest path 
● How to pattern?

Outline
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marginals of A => degree sequence 

For undirected graphs: we have   if there is 

an edge between  and , and degree of each node is:

Degree distribution:
○ shows how many nodes of degree  are in the graph
○ degree sequence of all nodes ⇒ count & get frequencies

 ⇒ 

Aij = Aji = 1
i j

di = ∑
j

Aij

d

[3, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 3] [0, 0, 4, 8]

Adjacency Matrix: marginals

0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 1 0 0 0 0 0 0 0 0 1 3
1 1 0 1 1 0 0 0 0 0 0 0 0 3
2 1 1 0 0 0 0 0 0 0 0 0 0 2
3 0 1 0 0 1 1 0 0 0 0 0 0 3
4 0 0 0 1 0 1 1 0 0 0 0 0 3
5 0 0 0 1 1 0 0 0 0 0 0 0 2
6 0 0 0 0 1 0 0 1 1 0 0 0 3
7 0 0 0 0 0 0 1 0 1 0 0 0 2
8 0 0 0 0 0 0 1 1 0 0 1 0 3
9 0 0 0 0 0 0 0 0 0 0 1 1 2
10 0 0 0 0 0 0 0 0 1 1 0 1 3
11 1 0 0 0 0 0 0 0 0 1 1 0 3

3 3 2 3 3 2 3 2 3 2 3 3

de
gr

ee
s

degrees

N = 12, E = 16



1930s o Sociogram [Moreno]

o Homophily [Lazarsfeld & Merton]
o Balance Theory [Heider et al.]o Random Graph [Erdos, Renyi, Gilbert]

o Degree Sequence [Tuttle, Havel, Hakami]

1950s

1960s

1970s

o Small Worlds [Migram]

o The Strength Of Weak Tie [Granovetter]

1992 o Structural Hole [Burt]
o Dunbar’s Number [Dunbar]

o HITS [Kleinberg]
o PageRank [Page & Brin]
o Hyperlink Vector Voting [Li]

1997

1998~1999

2000~2004o Influence Max’n [Domingos & Kempe et al.]
o Community Detection [Girvan & Newman]
o Network Motifs [Milo et al.]
o Link Prediction [Liben-Nowell & Kleinberg]

o Graph Evolution [Leskovec et al.] 
o 3 Deg. Of Influence [Christakis & Fowler]
o Social Influence Analysis [Tang et al.]
o Six Deg. Of Separation [Leskovec & Horvitz]
o Network Heterogeneity [Sun & Han]
o Network Embedding [Tang & Liu]
o Computer Social Science [Lazer et al.]

o Info. vs. Social Networks (Twitter) [Kwak et al.]
o Signed Networks [Leskovec et al.]
o Semantic Social Networks [Tang et al.]
o Four Deg. Of Separation [Backstrom et al.]
o Structural Diversity [Ugander et al.]
o Computational Social Science [Watts]
o Network Embedding [Perozzi et al.]

2005~2009

2010~2014

2015~2021

o Graph Neural Networks
o Deep Learning for Networks
o High-Order Networks [Benson et al.]  

Late 20
th C

entury:
C

S &
 Physics

20
th C

entury:
Sociology

21
st C

entury:
M

ore C
S

Recent Trend:
D

eep Learning for 
G

raphs

Based on Slides from Jie Tang

o Small Worlds [Watts & Strogatz]
o Scale Free [Barabasi & Albert]
o Power Law [Faloutsos x3]

http://keg.cs.tsinghua.edu.cn/jietang/
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Nodes: WWW documents 
Links:  URL links

Over 3 billion documents
ROBOT: collects all URL’s found in a 
document and follows them recursively

Expected

Observed

Network Science: Scale-Free Property

The first observations
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Nodes: Autonomous Systems (e.g. ISPs)
Links: Routing

Around 4K nodes
Graphs from data in routing tables 

The first observations
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Example

In highway networks, cities are 
of comparable connections, one 
has an expectation for it and each cities 
connections are usually close to this 
expectation: 

In air-traffic networks, we have 
major hubs and many smaller 
airports. 

λ = E(d ) = σ2(d )

highways

airways

poisson

powerlaw
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Linear fit in log-log implies:

Which gives:

What is C?

lo
g

log

Provides a good fit to the linear 
pattern observed in log-log plots for 
degree distribution

Even better fit when 
(logarithmically) bin the range

ln(pd) = − α ln(d) + β

pd = Cd−α

eβ

more info: Power_law

Power law distribution

https://en.wikipedia.org/wiki/Power_law
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● Income follows a Pareto distribution
○ few individuals earned most of the money & majority earned small amounts 
○ in the US 1% of the population earns a disproportionate 15% of the total US income
○ 80/20 rule (Pareto principle): a general rule of thumb  

e.g. 20 percent of the code has 80 percent of the errors

● Zipf's law
○ distribution of words ranked by their frequency in a random text corpus is approximated 

by a power-law distribution
○ the second item occurs approximately 1/2 as often as the first, and the third item 1/3 as 

often as the first, and so on
George 
Kingsley Zipf 
(1902 – 1950)

Vilfredo Federico 
Damaso Pareto 
(1848 – 1923)

Powerlaws are common

https://en.wikipedia.org/wiki/Pareto_principle
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Networks with power-law degree distribution 
are coined as scale-free 

Since power-law is scale invariance:

Note: function f is scale invariance iff  
 for some a & all 

f(d) = pd = Cd−α

f(λd) = C(λd)−α = λ−αf(d)

f (λx) = λaf (x) λ

(invariant under all re-scalings)

Scale free networks

lo
g

log

Provides a good fit to the linear 
pattern observed in log-log plots for 
degree distribution

Even better fit when 
(logarithmically) bin the range

https://en.wikipedia.org/wiki/Scale_invariance#Scale_invariance_of_functions_and_self-similarity
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Networks with power-law degree distribution 
are coined as scale-free 

Commonly used but also debated

debate is around how test statistically

What we care about most is not the fit 

but the heavy-tail property

Scale free networks are debated
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Heavy/fat/long Tailed Degree Distribution 

Degree distribution is often heavy tailed in real world networks 
There are many with very small degree & nodes with very high degree 

Read more on wiki if interested: Heavy-tailed_distribution, Fat-tailed_distribution, Power_law

Implication? variance might not be finite, and even mean might not be well-defined

This is the key point which is commonly 
referred to as powerlaw distribution and 
scale-free property. Powerlaw is a 
subtype of heavy tail and other subtypes 
might give a closer fit

https://en.wikipedia.org/wiki/Heavy-tailed_distribution
https://en.wikipedia.org/wiki/Fat-tailed_distribution
https://en.wikipedia.org/wiki/Power_law
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● Well-defined mean only if α>2 
● No finite variance if α<3

○ the degree of a randomly chosen node can be significantly 
different from the mean degree

● Most real world networks are within this range 
○ In the examples datasets of Barabasi book, we can see how 

variance deviates from expected variance of same mean random 
network with poisson distribution (dashed green line)

Mean & variance for a power-law

va
ria

nc
e

mean

pd = Cd−α
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Heavy/fat/long Tailed Degree Distribution 

Degree distribution is often heavy tailed in real world networks 
There are many with very small degree & nodes with very high degree 

Degree distribution is almost always plotted in log-log scale (linear scale plots often show only a single point)

     Actor-Movies                       Researcher-Publications               Wiki communications                    Internet                      Protein Interactions                              

Pro tip: it is better to (logarithmically) bin the range before plotting

19

http://konect.cc/networks/actor-movie
http://konect.cc/networks/dblp-author
http://konect.cc/networks/wiki-Talk
http://konect.cc/networks/topology
http://konect.cc/networks/maayan-vidal
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Fitting a power law

● Use a log-log scale & fit a line

● Use logarithmic binning

● (C)CDF is preferred which is also powerlaw ⇒ more accurate exponent 

○ p(x = d ) = Cd−α ⇒ p(x ≤ d ) ∝ Cd1−α

Complementary 
cumulative degree 
distribution, the 
fraction of nodes with 
degree greater than or 
equal to d 

No binning needed
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Fitting a power law

● Linear Fit in log-log
○ Common but debatable and might be 

misleading, e.g., here both distributions 
have a very good R2 and p-value because 
of log-log scale!

● Statistical Tests
○ For example, one tool based on log-

likelihood, i.e., how likely is function f to 
fit the data? Allows p-value estimation 
between two alternatives: https://
aaronclauset.github.io/powerlaws/

Power Law

From Cosia’s slides

https://en.wikipedia.org/wiki/Coefficient_of_determination
https://aaronclauset.github.io/powerlaws/
https://aaronclauset.github.io/powerlaws/
https://www.michelecoscia.com
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 Preferential Attachment
a.k.a rich get richer, accumulative advantage, Yule process, Matthew effect

Albert Barabasi Model (AB)
● A simple graph generation process that adds one node at each iteration & connects it to  

m existing nodes, hence making m new connections
● the probability of forming a connection to an existing node is proportional to its degree

What can create a powerlaw?

What is m here?

p(i) ∝ di

2
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● Sparsity Pattern
● Scale Free Pattern

○ Power-law degree distribution 
○ Fitting a power-law
○ Preferential attachment and AB model

● Assortativity Pattern 
● Transitivity Pattern 

○ powers of A & counting triangles
● Small world Pattern 

○ Shortest path 
● How to pattern?

Outline
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marginals of A => degree sequence 

For undirected graphs: 

The degree sequence gives degrees of all nodes:

What are the patterns of how node connect?
Is there any relation between degree of neighbouring nodes?
Do popular people mingle together?

di = ∑
j

Aij

Degree Assortativity
0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 1 0 0 0 0 0 0 0 0 1 3
1 1 0 1 1 0 0 0 0 0 0 0 0 3
2 1 1 0 0 0 0 0 0 0 0 0 0 2
3 0 1 0 0 1 1 0 0 0 0 0 0 3
4 0 0 0 1 0 1 1 0 0 0 0 0 3
5 0 0 0 1 1 0 0 0 0 0 0 0 2
6 0 0 0 0 1 0 0 1 1 0 0 0 3
7 0 0 0 0 0 0 1 0 1 0 0 0 2
8 0 0 0 0 0 0 1 1 0 0 1 0 3
9 0 0 0 0 0 0 0 0 0 0 1 1 2
10 0 0 0 0 0 0 0 0 1 1 0 1 3
11 1 0 0 0 0 0 0 0 0 1 1 0 3

3 3 2 3 3 2 3 2 3 2 3 3

{ (0, 1), (0, 2), (0, 11), 
(1, 0), (1, 2), (1, 3), 
(2, 0), (2, 1), 
(3, 1), (3, 4), (3, 5), 
(4, 3), (4, 5), (4, 6), 
(5, 3), (5, 4), 
(6, 4), (6, 7), (6, 8), 
(7, 8), (7, 6), 
(8, 6), (8, 7), (8, 10) 
(9, 10), (9, 11),  
(10, 8), (10, 9), (10, 11), 
(11, 0), (11, 9), (11, 10) }

{ (3, 3), (3, 2), (3, 3), 
(3, 3), (3, 2), (3, 3), 
(2, 3), (2, 3), 
(3, 3), (3, 3), (3, 2), 
(3, 3), (3, 2), (3, 3), 
(2, 3), (2, 3), 
(3, 3), (3, 2), (3, 3), 
(2, 3), (2, 3), 
(3, 3), (3, 2), (3, 3) 
(2, 3), (2, 3),  
(3, 3), (3, 2), (3, 3), 
(3, 3), (3, 2), (3, 3) }

0 1 2 3 4 5 6 7 8 9 10 11
3 3 2 3 3 2 3 2 3 2 3 3D =

(di, dj)∀(i, j ) ∈ E E
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Strong correlation between degree of connecting nodes

● For all edges, look at degrees of endpoints
○ Either nodes tend to connect to similar degree nodes or dissimilar

Degree Assortativity
assortative 

mixing

random real real 

{ (3, 3), (3, 2), (3, 3), 
(3, 3), (3, 2), (3, 3), 
(2, 3), (2, 3), 
(3, 3), (3, 3), (3, 2), 
(3, 3), (3, 2), (3, 3), 
(2, 3), (2, 3), 
(3, 3), (3, 2), (3, 3), 
(2, 3), (2, 3), 
(3, 3), (3, 2), (3, 3) 
(2, 3), (2, 3),  
(3, 3), (3, 2), (3, 3), 
(3, 3), (3, 2), (3, 3) }

M = (di, dj)∀(i, j ) ∈ E

Pearson 
correlation
M[0, :] & M[1, :]
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Strong correlation between some properties of connecting nodes

● For all edges, look at property of endpoints
○ Either nodes tend to connect to similar nodes or dissimilar

Assortativity & Mixing Patterns
assortative 

mixing

{ (3, 3), (3, 2), (3, 3), 
(3, 3), (3, 2), (3, 3), 
(2, 3), (2, 3), 
(3, 3), (3, 3), (3, 2), 
(3, 3), (3, 2), (3, 3), 
(2, 3), (2, 3), 
(3, 3), (3, 2), (3, 3), 
(2, 3), (2, 3), 
(3, 3), (3, 2), (3, 3) 
(2, 3), (2, 3),  
(3, 3), (3, 2), (3, 3), 
(3, 3), (3, 2), (3, 3) }

M = ( fi, fj)∀(i, j ) ∈ E

Pearson 
correlation
M[0, :] & M[1, :]

A friendship network at a US high school.
Valid when the 
property is orderedWe will discuss homophily 

later in the course
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● Sparsity Pattern
● Scale Free Pattern

○ Power-law degree distribution 
○ Fitting a power-law
○ Preferential attachment and AB model

● Assortativity Pattern 
● Transitivity Pattern 

○ powers of A & counting triangles
● Small world Pattern 

○ Shortest path 
● How to pattern?

Outline
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marginals of A => degree sequence 

For undirected graphs: we have   if there is an edge 
between  and , and degree of each node is:

What is  ?

Aij = Aji = 1
i j

di = ∑
j

Aij

∑
ij

Aij

Adjacency Matrix: marginals

0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 1 0 0 0 0 0 0 0 0 1 3
1 1 0 1 1 0 0 0 0 0 0 0 0 3
2 1 1 0 0 0 0 0 0 0 0 0 0 2
3 0 1 0 0 1 1 0 0 0 0 0 0 3
4 0 0 0 1 0 1 1 0 0 0 0 0 3
5 0 0 0 1 1 0 0 0 0 0 0 0 2
6 0 0 0 0 1 0 0 1 1 0 0 0 3
7 0 0 0 0 0 0 1 0 1 0 0 0 2
8 0 0 0 0 0 0 1 1 0 0 1 0 3
9 0 0 0 0 0 0 0 0 0 0 1 1 2
10 0 0 0 0 0 0 0 0 1 1 0 1 3
11 1 0 0 0 0 0 0 0 0 1 1 0 3

3 3 2 3 3 2 3 2 3 2 3 3

de
gr

ee
s

degrees

∑ di = 2E twice the number of edges N = 12, E = 16
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 : number of walks with length two

• If undirected:

• What is A2
ij ?

• What is A2
ii ? 

• What is A2
ii in directed graph?   

A2

i

j
k

Aik

network’s reciprocity
∑ij AijAji

∑ij Aij

Powers of A

A2
ij = ∑

k

Aik Akj

number of common neighbours

number of neighbours = degree

Akj

number of reciprocal neighbours 

i

j

Aij

Aji
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 : number of walks with length two

 : number of walks with length three

A2

A3

i

j
k

Aik

Powers of A

A2
ij = ∑

k

Aik Akj

Akj

A3
ij = ∑

kl

Aik AklAlj i

k
Aik

Akl

j
Akj

l
Is it same as number of paths?

■ A walk is a finite or infinite sequence of edges 
which joins a sequence of vertices

■ A trail is a walk in which all edges are distinct.

■ A path is a trail in which all vertices are distinct.
https://en.wikipedia.org/wiki/Path_(graph_theory)#Walk,_trail,_path

https://en.wikipedia.org/wiki/Path_(graph_theory)#Walk,_trail,_path
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 : number of walks with length two

 : number of walks with length three

A2

A3

i

j
k

Aik

Powers of A

A2
ij = ∑

k

Aik Akj

Akj

A3
ij = ∑

kl

Aik AklAlj i

k

Aij

Ajk

j

Akj

Is it same as number of paths? No!
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 : number of walks with length two

 : number of walks with length three

A2

A3 i

j
k

Aik

Powers of A

A2
ij = ∑

k

Aik Akj

Akj

A3
ij = ∑

kl

Aik Akl Alj

i

k

Aij

Ajk

j

Aki
What is  if graph is undirected?A3

ii

Number of Triangles Twice the
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Toy Example

import networkx as nx 

G = nx.random_geometric_graph(5, 0.5) 

A = nx.adjacency_matrix(G).todense() 

print A 

A2 = A*A 

print A2 

A3 = A2*A 

print A3 

[[0 1 1 1 0]
 [1 0 1 0 1]
 [1 1 0 1 1]
 [1 0 1 0 0]
 [0 1 1 0 0]]

[[3 1 2 1 2]
 [1 3 2 2 1]
 [2 2 4 1 1]
 [1 2 1 2 1]
 [2 1 1 1 2]]

[[4 7 7 5 3]
 [7 4 7 3 5]
 [7 7 6 6 6]
 [5 3 6 2 3]
 [3 5 6 3 2]]

1

2

3

5

4
 A2

 A3

 A

degrees

common 
neighbours 

triangles x 2

walks of 
length 3
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Clustering Coefficient 

Local clustering coefficient is defined per node: 

             

Shows how well connected the node’s neighbourhood is:

ci =
A3

ii

di(di − 1)
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Local clustering coefficient is defined per node: 

   , then averaged over all nodes in the graph

Global clustering coefficient is defined for the whole graph:

 

ci =
A3

ii

di(di − 1)

c =
triangles

triangbles

35

Clustering Coefficient measures the density of triangles

 number of all length two walks that can be a triangle if endpoints are connected

 number of all triangles in the graph

How can we measure total number of triangles in an undirected graph?
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Global clustering coefficient is defined for the whole graph:

 c =
triangles

triangbles

36

Clustering Coefficient measures the density of triangles

 number of all length two walks that can be a triangle if endpoints are connected

 number of all triangles in the graph

How can we measure total number of triangles in an undirected graph? [[3 1 2 1 2]
 [1 3 2 2 1]
 [2 2 4 1 1]
 [1 2 1 2 1]
 [2 1 1 1 2]]

[[4 7 7 5 3]
 [7 4 7 3 5]
 [7 7 6 6 6]
 [5 3 6 2 3]
 [3 5 6 3 2]]

1

2

3

5

4

 A2

 A3
degrees

common 
neighbours 

triangles x 2

walks of 
length 3

Tr(A3)/6
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Local clustering coefficient is defined per node: 

   , then averaged over all nodes in the graph

Global clustering coefficient is defined for the whole graph:

 

ci =
A3

ii

di(di − 1)

c =
Tr(A3)

Sum(A2) − Tr(A2)

37

Clustering Coefficient measures the density of triangles

Do they give the same results?
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Local clustering coefficient is defined per node: 

   , then averaged over all nodes in the graph

Global clustering coefficient is defined for the whole graph:

 

ci =
A3

ii

di(di − 1)

c =
Tr(A3)

Sum(A2) − Tr(A2)

38

Clustering Coefficient measures the density of triangles

Do they give the same results?

They differ:

 : Local average

 : Global 
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Global clustering coefficient is defined for the whole graph:

 c =
triangles

triangbles

39

Clustering Coefficient measures the density of triangles

 number of all length two walks that can be a triangle if endpoints are connected

 number of all triangles in the graph

How can we measure total number of triangles in an undirected graph?
[[3 1 2 1 2]
 [1 3 2 2 1]
 [2 2 4 1 1]
 [1 2 1 2 1]
 [2 1 1 1 2]]

[[4 7 7 5 3]
 [7 4 7 3 5]
 [7 7 6 6 6]
 [5 3 6 2 3]
 [3 5 6 3 2]]

1

2

3

5

4

 A2

 A3

degrees

common 
neighbours 

triangles x 2

walks of 
length 3

Tr(A3)/6
Can we compute number of triangles more efficiently?

Yes, from eigenvalues of A as  

We can approximate this with using only top 
eigenvalues since this distribution is skewed 
There are many works on approximating number of triangles in large graphs 

1
6 ∑

i

λ3
i

since Tr(A)=∑i  , 
and if  is eigenvalue 
of  then  is 
eigenvalue of 

λi

λ
A λp

Ap



Comp 511: Network Science 40

Real networks have a lot of triangles and strong transitivity 
e.g. Friends of friends are friends 

● High global clustering coefficient or high average local clustering coefficient

● Distribution of local clustering coefficient  

Transitivity Pattern

random real real 

Average 
clustering 
coefficient 
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● Sparsity Pattern
● Scale Free Pattern

○ Power-law degree distribution 
○ Fitting a power-law
○ Preferential attachment and AB model

● Assortativity Pattern 
● Transitivity Pattern 

○ powers of A & counting triangles
● Small world Pattern 

○ Shortest path 
● How to pattern?

Outline
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From Clauset’s 
slides

Derived 
from the 
Adjacency 
matrix

http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L0.pdf
http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L0.pdf
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Single-source shortest paths
• All shortest paths for a single node can be computed with BFS when graph is simple (unweighted, 

undirected), time complexity is linear in number of edges, i.e., , assuming 

• There are alternatives that also work for weighted graphs: Dijkstra's algorithm( ),  
Bellman–Ford algorithm ( ) 

All-pairs shortest paths
• Floyed-Warshall algorithm: 

In real world graph V and E are in the same order so there is not much difference between algorithms.

We often care about the longest & average shortest paths

𝒪(E ) E > V
𝒪(E + VlogV )

𝒪(VE )

𝒪(V3)

Shortest Path 

https://en.wikipedia.org/wiki/Shortest_path_problem

https://en.wikipedia.org/wiki/Shortest_path_problem
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Shortest path distribution is normal with small [shrinking] average in real world 
You can reach any node in a graph passing through few hubs 
This is often referred to as small world

Diameter is also small {longest sp}

Small average shortest path

Stanley Milgram
 (1933-1984)

Letter-passing experiment, 
In 1967 discovered the 
Six Degrees of Separation Four Degrees of Separation

You are 4 hops away from 
anyone in the planet



1930s o Sociogram [Moreno]

o Homophily [Lazarsfeld & Merton]
o Balance Theory [Heider et al.]o Random Graph [Erdos, Renyi, Gilbert]

o Degree Sequence [Tuttle, Havel, Hakami]

1950s

1960s

1970s

o Small Worlds [Migram]

o The Strength Of Weak Tie [Granovetter]

1992 o Structural Hole [Burt]
o Dunbar’s Number [Dunbar]

o HITS [Kleinberg]
o PageRank [Page & Brin]
o Hyperlink Vector Voting [Li]

1997

1998~1999

2000~2004o Influence Max’n [Domingos & Kempe et al.]
o Community Detection [Girvan & Newman]
o Network Motifs [Milo et al.]
o Link Prediction [Liben-Nowell & Kleinberg]

o Graph Evolution [Leskovec et al.] 
o 3 Deg. Of Influence [Christakis & Fowler]
o Social Influence Analysis [Tang et al.]
o Six Deg. Of Separation [Leskovec & Horvitz]
o Network Heterogeneity [Sun & Han]
o Network Embedding [Tang & Liu]
o Computer Social Science [Lazer et al.]

o Info. vs. Social Networks (Twitter) [Kwak et al.]
o Signed Networks [Leskovec et al.]
o Semantic Social Networks [Tang et al.]
o Four Deg. Of Separation [Backstrom et al.]
o Structural Diversity [Ugander et al.]
o Computational Social Science [Watts]
o Network Embedding [Perozzi et al.]

2005~2009

2010~2014

2015~2021

o Graph Neural Networks
o Deep Learning for Networks
o High-Order Networks [Benson et al.]  

Late 20
th C

entury:
C

S &
 Physics

20
th C

entury:
Sociology

21
st C

entury:
M

ore C
S

Recent Trend:
D

eep Learning for 
G

raphs

Based on Slides from Jie Tang

o Small Worlds [Watts & Strogatz]
o Scale Free [Barabasi & Albert]
o Power Law [Faloutsos x3]

http://keg.cs.tsinghua.edu.cn/jietang/
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Pattern Detection

● WHY?
○ Understand the language of complex systems
○ Characterize different types of networks
○ Design {efficient} data structure & algorithms
○ Tangled with Measurements, Anomaly detection, Modelling

● HOW?
○ What do networks have in common? 
○ How to measure or characterize (nodes, communities, whole) networks?
○ What are universal patterns observed in real world networks?
○ What is structure of real-world networks?
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Table 10.1
NS book

c: average degree
s: fraction of nodes in the 
largest component
l: average shortest path of 
connected nodes

: powerlaw slope
C: global clustering 
coefficient 

: average local clustering 
coefficient
r: degree correlation

α

cWS
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{common} Network Repositories

From Clauset’s slides

1. Newman’s collection
2. Stanford Large Network 

Dataset Collection
3. The Colorado Index of 

Complex Networks (ICON)
4. The Koblenz Network 

Collection
5. https://paperswithcode.com/

datasets?mod=graphs

http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L0.pdf
http://www-personal.umich.edu/~mejn/netdata/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://icon.colorado.edu/#!/
https://icon.colorado.edu/#!/
http://konect.cc
http://konect.cc
https://paperswithcode.com/datasets?mod=graphs
https://paperswithcode.com/datasets?mod=graphs
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{common} Network Repositories

1. Newman’s collection
2. Stanford Large Network 

Dataset Collection
3. The Colorado Index of 

Complex Networks (ICON)
4. The Koblenz Network 

Collection
5. https://paperswithcode.com/

datasets?mod=graphs

http://www-personal.umich.edu/~mejn/netdata/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://icon.colorado.edu/#!/
https://icon.colorado.edu/#!/
http://konect.cc
http://konect.cc
https://paperswithcode.com/datasets?mod=graphs
https://paperswithcode.com/datasets?mod=graphs
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{common} Network Repositories

1. Newman’s collection
2. Stanford Large Network Dataset 

Collection
3. The Colorado Index of Complex 

Networks (ICON)
4. The Koblenz Network Collection
5. https://paperswithcode.com/

datasets?mod=graphs

Let us know in slack if you come 
across other large repos

http://www-personal.umich.edu/~mejn/netdata/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://icon.colorado.edu/#!/
https://icon.colorado.edu/#!/
http://konect.cc/
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{common} Network Repositories

1. Newman’s collection
2. Stanford Large Network 

Dataset Collection
3. The Colorado Index of 

Complex Networks (ICON)
4. The Koblenz Network 

Collection
5. https://paperswithcode.com/

datasets?mod=graphs

http://www-personal.umich.edu/~mejn/netdata/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://icon.colorado.edu/#!/
https://icon.colorado.edu/#!/
http://konect.cc
http://konect.cc
https://paperswithcode.com/datasets?mod=graphs
https://paperswithcode.com/datasets?mod=graphs
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From Clauset’s slides

Hypothesize, analyze & observe

http://konect.cc/plots/degree_distribution

http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L0.pdf
http://konect.cc/plots/degree_distribution
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From Clauset’s slides

Hypothesize, analyze & observe

http://konect.uni-koblenz.de/plots/degree_distribution

All the degrees in the Koblenz Network Collection

http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L0.pdf
http://konect.uni-koblenz.de/plots/degree_distribution
http://konect.cc/
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● Stanford Large Network Dataset Collection (SNAP)

Common benchmark repositories

● The Colorado Index of Complex Networks (ICON)

● Network Repository (networkrepository)

Check the visualization demo here: https://networkrepository.com/graphvis.php

● The KONECT Project (KONECT)

Gephi, a notable visualization tool: https://
gephi.org/users/tutorial-visualization/

https://snap.stanford.edu/data/
https://icon.colorado.edu/#!/
https://networkrepository.com/
https://networkrepository.com/graphvis.php
http://konect.cc/
https://gephi.org/users/tutorial-visualization/
https://gephi.org/users/tutorial-visualization/
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● Listed on the course website

More resources 

55
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Example benchmark datasets

You can download these bundled from Barbasi’s website, for the first assignment

http://networksciencebook.com/translations/en/resources/data.html

