
Comp 511: Network Science, Winter 2025

Models
Analysis of complex interconnected data
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● Reminder, first assignment due in a 9 days
○ http://www.reirab.com/Teaching/NS25/Assignment_1.pdf 
○ Any questions for the assignment?
○ Submit single entry as a Group in Mycourses
○ On the report, make sure it is well-written

○ Plots have legends, axes are marked clearly, datasets explained
○ Explain what you have done, reference each (set of) plot(s) in text 

● Use Ed for easier communications

Quick Notes

http://www.reirab.com/Teaching/NS25/Assignment_1.pdf
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● Patterns Quick recap

● Models
○ ER model
○ BA model
○ SBM
○ Configuration model
○ FF model
○ Kronecker graph model
○ Fitting to observed graphs
○ LFR model

Outline
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● Sparsity Pattern 
○ mean degree << number of nodes (E << Emax)

● Scale Free Pattern
○ heavy tailed degree distribution

● Assortativity Pattern 
○ positive or negative correlation between degree of 

connecting nodes
● Transitivity Pattern 

○ high ratio of closed triangles (clustering coefficient)
● Small world Pattern 

○ small average shortest path

Patterns: quick recap

https://arxiv.org/pdf/1801.01229.pdf
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● Patterns Quick recap

● Models
○ ER model
○ SBM
○ Configuration model
○ AB model
○ FF model
○ Kronecker graph model
○ Fitting to observed graphs
○ LFR model

Outline
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● Introduced in 1960
● Basis of random graph theory
● Simple model that results in small-world graphs
● Parameters:  or  

○ n: number of nodes
○ p: probability of an edge between any two nodes
○ m: number of edges

● Generation: How can we generate an ER graph?

𝒢(n, p) 𝒢(n, m)

Erdös-Rényi Model (ER)

Paul Erdős
(1913-1996)

Alfréd Rényi
(1921-1970)

Side note:
What is Erdős number?

all edges are equally likely
 ER(n, p) 
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● Introduced in 1960
● Basis of random graph theory
● Simple model that results in small-world graphs
● Parameters:  or 

○ n: number of nodes
○ p: probability of an edge between any two nodes
○ m: number of edges

● Generation: How can we generate an ER graph?
○ : for each pair of node connect them with probability  ( ): toss M (n choose 2) 

coins {has linear time implementation}

𝒢(n, p) 𝒢(n, m)

𝒢(n, p) p 𝒪(n2)

Erdös-Rényi Model (ER)

○ : for each edge, select a random source and 
destination( ): roll 2m n-sided die
𝒢(n, m)

𝒪(m)

N = 10, M = (10
2 ) = 45

What is p here?

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.036113
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Erdös-Rényi Model (ER): Binomial Graphs

1 − p
p

0 1

Probability of generating     
a graph with m edges

Select m 
edges out of 
M possible

Probability of 
having m 
links

Probability of 
not having the 
rest of links

● Generation: How can we generate an ER graph?
○ : toss M (n choose 2) biased coins (with success probability )

● ER Graphs are also called Binomial Graphs
○ A coin’s outcome has a Bernoulli distribution,  is a Bernoulli random 

variable that takes values of 0 or 1 with:    

       or     

○ Number of heads in a sequence of independent coin tosses follows a 
Binomial distribution 

𝒢(n, p) p

x

Bernoulli(x | p) = px(1 − p)(1−x) Bernoulli(x | p) = {p x = 1
1 − p x = 0

Binomial(M, m |p) = (M
m)pm(1 − p)M−m
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Select k 
neighbours 
out of n-1 
possible nodes

Probability of 
having k links

Probability of 
not having the 
rest of links

● ER Graphs are also called Binomial Graphs
○ Probability of an edge:    

      

○ Probability of generating a graph with m edges:

○ Degree distribution: 

                                  

Bernoulli(x |p) = px(1 − p)(1−x)

Binomial(M, m |p) = (M
m)pm(1 − p)M−m

p(k) = Binomial(n − 1, k |p) = (n − 1
k )pk(1 − p)n−1−k

9

Erdös-Rényi Model (ER): Degree Distribution
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Select k 
neighbours 
out of n-1 
possible nodes

Probability of 
having k links

Probability of 
not having the 
rest of links

● Degree distribution: 

                                  

We know the mean and variance of a Binomial distribution, so we easily get:
○ Mean Degree: 
○ Variance of Degree: 

p(k) = Binomial(n − 1, k |p) = (n − 1
k )pk(1 − p)n−1−k

p(n − 1)
p(1 − p)(n − 1)

10

Erdös-Rényi Model (ER): Degree Distribution

k̄ = 0.5(40) = 20
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Select k 
neighbours 
out of n-1 
possible nodes

Probability of 
having k links

Probability of 
not having the 
rest of links

● Degree distribution: 

                                  

● For large  and small , which is often the case in real world graphs, we can approximate 
this with Poisson distribution with mean of average degree

● ER graphs are therefore also sometimes called Poisson random graphs

p(k) = Binomial(n − 1, k |p) = (n − 1
k )pk(1 − p)n−1−k

n k

p(k) = e−k̄ k̄k

k!

11

Erdös-Rényi Model (ER): Degree Distribution
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Probability 
of an edge 
between a 
pair

Number of 
distinct pairs of 
neighbours of i

12

Erdös-Rényi Model (ER): Clustering Coefficient

● Local clustering coefficient:   

where  : number of edges between neighbours of 

● Expected number of edges between i’s neighbours, given since edges are i.i.d and equally likely:

 

● Expected clustering coefficient becomes:

● Small [Zero] clustering coefficient
○ The clustering coefficient is average degree divided by number of nodes therefore with fixed 

average degree, and when n grows, clustering coefficient goes to zero

ci =
A3

ii

ki(ki − 1)
=

2ℰi

ki(ki − 1)
ℰi i

E[ℰi] = p
ki(ki − 1)

2

E[ci] = p
ki(ki − 1)
ki(ki − 1)

= p =
k̄

n − 1
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Emergence of a giant component at  that is when p =
1

n − 1
k̄ = 1

13

Erdös-Rényi Model (ER): Connectivity

A network component whose 
size grows in proportion to n 
we call a giant component.

In expectation, every node 
has one edge 

k̄ = 0 k̄ = n − 1

Fig from https://snap-
stanford.github.io/

cs224w-notes/
preliminaries/measuring-
networks-random-graphs

https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
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Emergence of a giant component at  that is when p =
1

n − 1
k̄ = 1
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Erdös-Rényi Model (ER): Connectivity

A network component whose 
size grows in proportion to n 
we call a giant component.

In expectation, every node 
has one edge 

        k̄ = 1

● With average degree of 2, 80% of 
nodes are in the GCC

● in the limit of large n, the 
probability that we will have two 
separate giant components in 
such a network goes to zero
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● ER graphs are Small world
○ The diameter is 

● Example: we increase the number of nodes, while keeping the 
average degree constant, average shortest path increase is 
logarithmic, that is in order of 

log(n)/ log(pn)

𝒪(log(n))

Erdös-Rényi Model (ER): path length

Compare it with the pattern in 
real world networks: Average 
shortest path distance in 
Facebook friendship networks 
of 100 US universities (with 
different sizes)

from Newman’s book
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● Binomial degree distribution

● Low clustering coefficient 

● Small average path length 

Erdös-Rényi Model (ER) VS Real Graphs

16

● Sparsity Pattern 
○ mean degree << number of nodes

● Scale Free Pattern
○ heavy tailed degree distribution

● Assortativity Pattern 
○ correlation between connecting nodes

● Transitivity Pattern 
○ high ratio of closed triangles 

● Small world Pattern 
○ small average shortest path

No

No

Yes

Real world graphs are not random 
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● Patterns Quick recap

● Models
○ ER model 
○ SBM
○ Configuration model
○ AB model
○ FF model
○ Kronecker graph model
○ Fitting to observed graphs
○ LFR model

Outline
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● Generalized ER to created block-structured graphs

● Parameters: 
○ n: number of nodes
○ B: number of blocks, disjoint sets that divide the n nodes
○ P:  probabilities per each (and between any pairs of) block

● Generation: create an ER graph in each (within, between) block 
with the corresponding probability, i.e. probability of edge depends 
on the block memberships of its adjacent nodes

○  , where  gives the block id of node i

B × B

p(Aij = 1) = Pbibj
bi

Stochastic Block Models (SBM)
P00

P11

P22

P01 P02
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● Each block has Binomial 
degree distribution

● Low clustering coefficient 

● Small average path length 

Stochastic Block Models (SBM) VS Real Graphs

19

● Sparsity Pattern 
○ mean degree << number of nodes

● Scale Free Pattern
○ heavy tailed degree distribution

● Assortativity Pattern 
○ correlation between connecting nodes

● Transitivity Pattern 
○ high ratio of closed triangles 

● Small world Pattern 
○ small average shortest path

No

No

Yes

Similar to ER

There is degree corrected block 
models, see here

p(Aij = 1) = Bernoulli(θiθjPbibj
)

https://arxiv.org/pdf/1008.3926.pdf
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● By Mark Newman, generalizing ER to specific degree distribution
● Parameters: degree sequence (can be easily sampled from any distribution)
● Generation: assign slots, randomly connect them
● Serves as a null model for community detection 

○ edges are distributed randomly given the degrees are fixed
○ communities that are not formed randomly should deviate from this

Configuration model

Slot 
endpoint
node ids

pij =
kikj

2m − 1
≈

kikj

2m
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● Introduced in 1999, a.k.a Barabási–Albert (BA) model
● Uses preferential attachment which gives scale-free graphs
● Parameters: BA (n,m)

○ n: number of nodes
○ m: average degree 

● Generation: 
○ add one node at the time, add m connections per new node if possible
○ probability of forming a connection to an existing node is proportional to its degree:

p(i) =
ki

∑j kj
=

ki

2m

Albert Barabasi Model (AB)
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● Powerlaw degree distribution

● Low clustering coefficient 

● Small average path length 

Albert Barabasi Model (AB) VS Real Graphs

22

● Sparsity Pattern 
○ mean degree << number of nodes

● Scale Free Pattern
○ heavy tailed degree distribution

● Assortativity Pattern 
○ correlation between connecting nodes

● Transitivity Pattern 
○ high ratio of closed triangles 

● Small world Pattern 
○ small average shortest path

Yes

No

Yes

Similar to Configuration Model
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Looking at measures over time or as graph 
grows (x-axis usually time or number of nodes)

e.g. diameter shrinks over time in many 
real work graphs

See more here: Graphs over Time: Densification Laws, Shrinking 
Diameters, and Possible Explanations

Evolution Patterns of Real Graphs: beyond static patterns

23

https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf
https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf
https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf


Comp 511: Network Science 24

● By Leskovec, 2005
● To follow evolution patterns observed in real-world graphs

○ denser over time, the average degree increasing, and the diameter decreasing

● Parameters: n, p and rp
○ n: number of nodes
○ p: forward burning probability
○ r : backward burning probability

● Generation:
○ add a node at a time, connect the node to an ambassador, chosen uniformly at random
○ draw number of inlink and outlink from geometric distributions with means of p/(1 −p) and r/(1 −r) respectively
○ the new node recursively forms (out)links to the (in & out) neighbours of every node it connects to until fire dies 

Forest Fire model (FF)

new
ambassador

Burn Burn

Burn
Burn
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● Heavy-tailed degree distribution
○ rich get richer: older nodes have more chances to become ambassadors

● Densifies
○ newly entered node has more links to neighbours close to its ambassador

● Can result in shrinking diameter
○ Which is observed in real-world networks

Forest Fire model (FF): properties
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● Patterns Quick recap

● Models
○ ER model
○ SBM
○ Configuration model
○ AB model
○ FF model
○ Kronecker graph model
○ Fitting to observed graphs
○ LFR model

Outline
AB model FF model
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 Kronecker product of matrices

Based on self-similarity, generate graphs recursively [Leskovec, 2010]

Consider a small initiator matrix, use kronecker products to get the adjacency 
matrix as

 

Kronecker graph model

More here: https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs

whole has the same shape of its part

3x3 9x9

27x27

KxLNxM

N*K x M*L

81x81

https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
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Stochastic Kronecker graph, initiator matrix is probabilities and edges 
are drawn for the final graph with the corresponding probabilities 

if all probabilities are equal in the initial matrix, this becomes 
equivalent to ER

how to generate efficiently? instead of  toss coins, we can go 
hierarchal, sample graphs linearly, by considering how the probability 
matrix is generated, for more detail see here

n2

Stochastic Kronecker graph model

https://www.youtube.com/watch?v=Xnpt8US31cQ
https://cs.stanford.edu/people/jure/pubs/kronecker-jmlr10.pdf
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the initiator matrix can be set based on real-world 
data to sample similar graphs, by searching over 
what matrix is more likely to give the observed 

Kronecker graph model

for more detail see here

https://cs.stanford.edu/people/jure/pubs/kronecker-jmlr10.pdf
https://www.youtube.com/watch?v=Xnpt8US31cQ
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● Option 1: 
○ Measure and plot different characteristics of the observed graphs
○ Tune the parameters of the model to find a close enough fit to the observed patterns

● Option 2: 
○ Define the likelihood of observing a graph, usually assuming edges are independent
○ Use maximum likelihood to find the model parameters

Fitting to observed graphs: more general
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Likelihood of G given Probability matrix P and partitioning b

31

Fitting the SBM to data

ℒ(G |P, b) = ∏
ij

P(i → j |P, b)

ℒ(G |P, b) = ∏
ij∈E

Pbibj∏
ij∉E

1 − Pbibj

Recall in SBM: 

 , where  gives the block id of node i  p(Aij = 1) = Pbibj bi

1

2
3

5

6
4

1

2
3

5

6
4

1 2 3 4 5 6
0 0 0 1 1 1b =

ℒ(G |P, b) = ∏
ij∈E

P(i → j |P, b)∏
ij∉E

1 − P(i → j |P, b) 1 2 3 4 5 6
0 0 0 0 1 1b =

P P
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● Extends the configuration model
● Sample degree sequence and block sizes 

from power law distributions 
● Randomly assign nodes to blocks 

according to sampled block sizes
● Wire nodes based on configuration model 

and the sampled degree sequence
● Rewire until each node has a fixed 

fraction, , of links going outside its blockμ

Lancichinetti, Fortunato, and Radicchi (LFR) model

32


