

Centrality

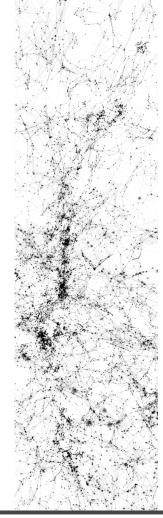
- Degree Centrality
- Eigenvalue Centrality
- Katz Centrality
- PageRank
- o HITS
- Closeness centrality
- Betweenness centrality

Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity

 $R: v \mapsto \mathbb{R}$

 $S:(u,v)\mapsto \mathbb{R}$

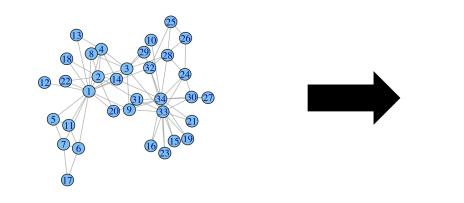


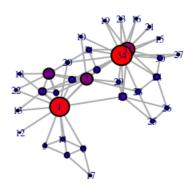
Centrality

Measure the importance of nodes:

maps each node to a value such that ranking by these values ranks the nodes by their importance

$$R: v \mapsto \mathbb{R}$$





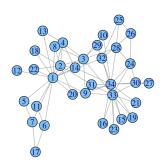
http://www.rpubs.com/shestakoff/sna_lab4

Centrality

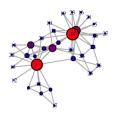
Different ways to define importance \Rightarrow

Different centrality measures ⇒

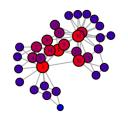
Different ranking of the nodes on the same graph



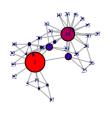
Degree centrality



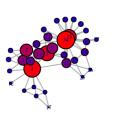
Closeness centrality



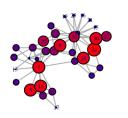
Betwenness centrality



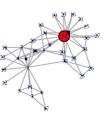
Eigenvector centrality



Bonachich power centrality



Alpha centrality



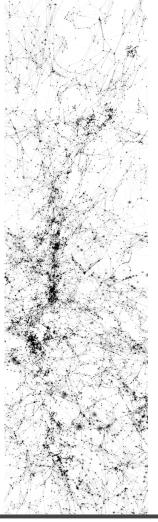
http://www.rpubs.com/shestakoff/sna_lab4

Centrality

- Degree Centrality
- Eigenvalue Centrality
- Katz Centrality
- PageRank
- o HITS
- Closeness centrality
- Betweenness centrality

Similarity

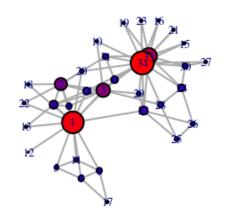
- Common neighbour
- Cosine similarity
- Jaccard similarity



Degree centrality

Degree is the simplest centrality measure

more connections you have (number of edges), more people you know (number of neighbours), more important you are

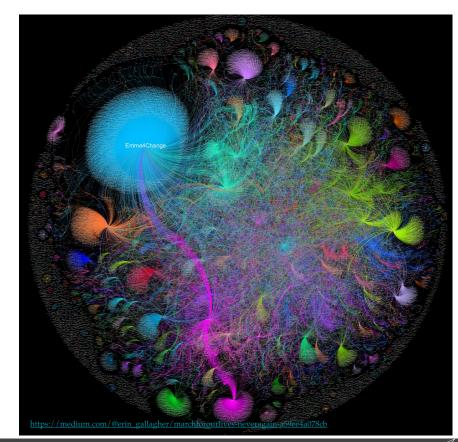


Can you think of a widely used example where people are ranked by degree centrality?

Degree centrality, example

Influencers in social media: number of followers, number of retweets

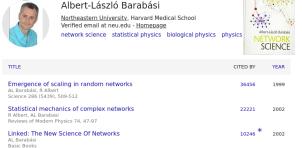
https://www.newyorker.com/culture/annals-of-inquiry/a-history-of-the-influencer-from-shakespeare-to-instagram



Degree centrality, example

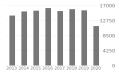
paper citation

Important papers: number of citations, number of time a paper is cited



Cited by

THEE	CITED DI	TEAR
The structure and function of complex networks MEJ Newman SIAM review 45 (2), 167-256	20389	2003
Community structure in social and biological networks M Girvan, MEJ Newman Proceedings of the national academy of sciences 99 (12), 7821-7826	14555	2002
Finding and evaluating community structure in networks MEJ Newman, M Girvan Physical raviow E 60 /21 026113	13191	2004



Cited by

	Christos Faloutsos CMU Verified email at cs.cmu.edu - Homepage Data Mining Graph Mining Databases	ı	FOLLOW
TITLE		CITED BY	YEAR
M Faloutsos, P Falou	ationships of the internet topology sos, C Faloutsos puter communication review 29 (4), 251-262	7486	1999
R Agrawal, C Falouts	search in sequence databases os, A Swami ce on foundations of data organization and algorithms	3075	1993
	erying images by content, using color, texture, and shape r, W Equitz, MD Flickner, EH Glasman, D Petkovic,	3012	1993



All

Since 2017

TITLE	CITED BY	YEAR
node2vec: Scalable feature learning for networks A Grover, J Leskovec Proceedings of the 22nd ACM SIGKDD international conference on Knowledge	7940	2016
Inductive representation learning on large graphs W Hamilton, Z Ying, J. Leskovec Advances in neural information processing systems 30	7427	2017
SNAP Datasets: Stanford large network dataset collection J Leskovec: A Krevl	3520	2014

Since 2017	All		
82824	114461		Citations
112	128		h-index
276	294		i10-index
21000			
15750			
10500	ш	- 1	
5250	ш	н	
	2019 2020 2		

VIEW ALL

How to measure having important connections?

You might only have one connection but it can be the president, or the king

16

Eigenvector centrality of a node is proportional to the centrality scores of its neighbours

Assume x_i gives the importance of node i, and N(i) gives set of neighbours of i

$$N(i) = \{j \mid A_{ij} = 1\}$$

$$x_i = \frac{1}{\kappa} \sum_{j \in N(i)} x_j$$

You are important if you have **many connections** (of some importance), or a few but **very important connections**

Eigenvector centrality of a node is proportional to the centrality scores of its neighbours

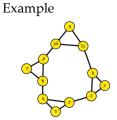
Assume x_i gives the importance of node i, and N(i) gives set of neighbours of i

$$N(i) = \{j | A_{ii} = 1\}$$

$$x_i = \frac{1}{\kappa} \sum_{j \in N(i)} x_j$$

How can we write this in matrix notation?

Note that we have $\sum_{i \in N(i)} x_i = A_i$: $x_i = A_i$: $x_i = A_i$: here x_i is a vector of all centrality scores



$$i = 4 \quad \Rightarrow \quad \sum_{j \in N(4)} x_j = A_4 : x = 8$$

Eigenvector centrality of a node is proportional to the centrality scores of its neighbours

Assume x_i gives the importance of node i, and N(i) gives set of neighbours of i

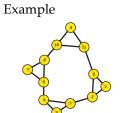
$$N(i) = \{j | A_{ij} = 1\}$$

$$x_i = \frac{1}{\kappa} \sum_{j \in N(i)} x_j$$

How can we write this in matrix notation?

$$x = \frac{1}{\kappa} Ax \quad \Rightarrow \quad \kappa x = Ax$$

here *x* is a vector of all centrality scores



Eigenvector centrality of a node is proportional to the centrality scores of its neighbours

Assume x_i gives the importance of node i, and N(i) gives set of neighbours of i

$$x_i = \frac{1}{\kappa} \sum_{i \in N(i)} x_j$$
 Which in matrix notation is: $\kappa x = Ax$

[Perron–Frobenius theorem]

Any matrix with all non-negative values, such as A, any eigenvector but the leading eigenvector has at least one negative element.

What is *x*? an eigenvector of the adjacency matrix

Which eigenvector should we use?

we want **x** to be non-negative then the only choice is the leading eigenvector

What is κ ? largest eigenvalue

Eigenvector centrality of a node is proportional to the centrality scores of its neighbours

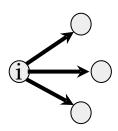
Assume x_i gives the importance of node i, and N(i) gives set of neighbours of i

$$x_i = \frac{1}{\kappa} \sum_{j \in N(i)} x_j$$
 Which in matrix notation is: $\kappa x = Ax$

x is the **eigenvector** corresponding to the largest eigenvalue

Eigenvector centrality ranks the likelihood that a node is visited on a random walk of infinite length on the graph why? Leading eigenvector is computed with power iteration, $x^{(i+1)} = Ax^{(i)}$, whereas A^k gives number of walks of length k {more on this later}

Eigenvector centrality in directed networks



$$x_i = \kappa^{-1} \sum_j A_{ji} x_j$$

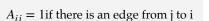
$$\kappa x = xA$$

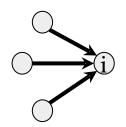
[left]

Can be defined in two ways

⇒ right and left eigenvectors,
and two leading eigenvalues

Consider the citation network and the www, which one indicates importance?





$$x_i = \kappa^{-1} \sum_j A_{ij} x_j$$

$$\kappa x = Ax$$

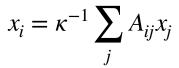
Eigenvector centrality in directed networks

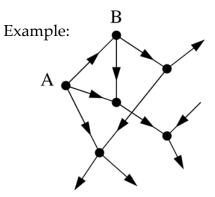
Nodes have non-zero score only if in a strongly connected component of two or more nodes, or the out-component of such a strongly connected component

When will this be a problem? Can you think of an example?

In an **acyclic networks**, such as **citation networks**, where there is no strongly connected components (of more than one node) and all nodes get zero score

How can we fix it? Katz and PageRank variants





What is the score of A?

a node with no incoming edge

⇒ zero score

What is the score of B?

only ingoing edge is from A

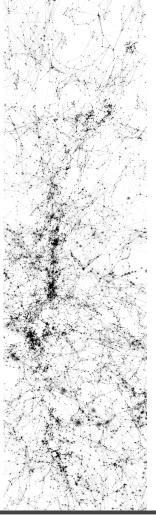
⇒ zero score

Centrality

- Degree Centrality
- Eigenvalue Centrality
- Katz Centrality
- PageRank
- o HITS
- Closeness centrality
- Betweenness centrality

Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity



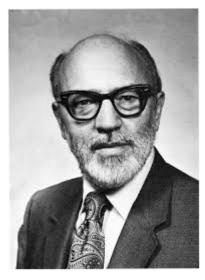
$$x_i = \alpha \sum_j A_{ij} x_j + \beta$$

 α and β are positive constants

 β : every node gets a basic importance

"everybody is somebody"

Nodes with zero in-degree gets β and can pass it on \Rightarrow nodes with high in-degree get high score regardless of being in SCC or pointed by it



Leo Katz (1914-1976) 1953 - Katz centrality

(6

$$x_{i} = \alpha \sum_{j} A_{ij} x_{j} + \beta$$

$$x = \alpha A x + \beta 1$$

$$x = \beta (I - \alpha A)^{-1} 1$$

$$x = (I - \alpha A)^{-1} 1$$

1 is the uniform vector of all ones

I is the identity matrix with diagonal of 1

Example:

{with
$$\beta = 1$$
}

absolute magnitude of centrality scores are not important, we care about the relative values, so β multiplier is not important

What do we get if we set $\alpha = 0$?

$$x = (I - \alpha A)^{-1} 1$$

What do we get if we set $\alpha = 0$? All nodes have the same importance as β

As we increase α , scores increase and might start to diverge, which happens when

$$det(I - \alpha A) = 0 \Rightarrow det(\alpha^{-1}I - A) = 0 \Rightarrow \alpha^{-1} = \lambda_i \Rightarrow \alpha = 1/\lambda_i$$

At what α this first happens? largest (most positive) eigenvalue, a.k.a. principal/dominant eigenvalues

To converge then we need: $\alpha < 1/\lambda_1$ In practice α is often set close to this limit

This places the maximum amount of weight on the eigenvector term and the smallest amount on the constant term

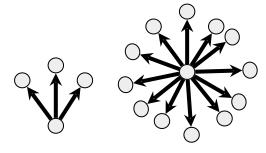
The determinant of a matrix is equal to the product of its eigenvalues, and matrix cI - A has eigenvalues $c - \lambda_i$ where λ_i are the eigenvalues of $A \Rightarrow det(cI - A) = (c - \lambda_1)(c - \lambda_2)...(c - \lambda_n)$, with zeros at $c = \lambda_1, \lambda_2, ...$, therefore the solutions of det(cI - A) = 0 is the eigenvalues of A

)]

$$x = (I - \alpha A)^{-1} 1$$

 $\alpha < 1/\lambda_1$

If there is an important directory page, linking to many pages, it passes its importance to all the cited web pages, one can think that the importance should be diluted if shared with many others



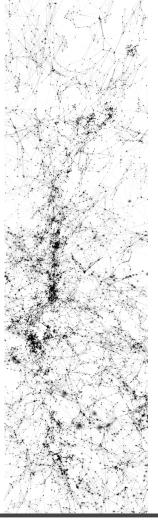
9

Centrality

- Degree Centrality
- Eigenvalue Centrality
- Katz Centrality
- PageRank
- o HITS
- Closeness centrality
- Betweenness centrality

Similarity

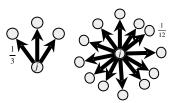
- Common neighbour
- Cosine similarity
- Jaccard similarity



1

PageRank

divide your centrality to your neighbours, instead of passing to all



$$x_i = \alpha \sum_j A_{ij} \frac{x_j}{d_j^{out}} + \beta$$
 $d_j^{out} = \sum_k A_{kj}$

$$x = \alpha A D^{-1} x + \beta 1$$

$$x = (I - \alpha A D^{-1})^{-1} 1$$

to avoid 0/0 when $d_j^{out} = 0 \Rightarrow D_{ii} = max(d_j^{out}, 1)$

 $d_i^{\text{out}} = 0$ when $A_{ii} = 0$ for all i then $A_{ii} / d_i^{\text{out}} = 0/0$, which we want to be 0

What should α be?

lpha <the leading eigenvalue of AD^{-1} which is 1 for undirected network but changes for directed ones

The Google search engine uses a value of α =0.85

Q



Brin, S. and Page, L., The anatomy of a large-scale hypertextual Web search engine, Comput. Netw. 30, 107–117 (1998).

PageRank: iterative algorithm

Relates to power iteration method which computes eigenvalues & eigenvectors of any matrix

Start with equal rank for all

$$x^{(0)} = \left[\frac{1}{n}, \frac{1}{n} \dots \frac{1}{n}\right]$$

Update the scores

$$x^{(t+1)} = Mx^{(t)}$$

Repeat until convergence

$$\|x^{(t+1)} - x^{(t)}\| < \epsilon$$

This converges to the leading eigenvalue, for the detailed PageRank version with α see this

$$x_i^{(t+1)} = \sum_{j} A_{ij} \frac{x_j^{(t)}}{d_j^{out}} = \sum_{j \to i} \frac{x_j^{(t)}}{d_j^{out}}$$

What is
$$M$$
? AD^{-1} , $M_{ij} = \frac{A_{ij}}{d_i^{out}}$

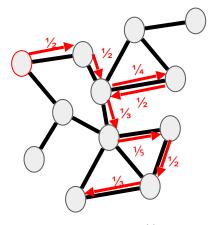
M is a column stochastic matrix and columns sum to 1 Therefore the largest eigenvalue of M is 1.

PageRank: connection to random walk

A surfer walks on a graph:

At time t, he is at node i and moves out of it through one of the outlinks of i chosen uniformly at random, and ends up at neighbour j, repeats from j at time t+1

 $p_{: a \text{ vector of length n (number of nodes)}}^{(t)}$ which gives the probabilities of the random walker being at each node



$$x_i^{(t+1)} = \sum_{j \to i} \frac{x_j^{(t)}}{d_j^{out}}$$

Where is the surfer at time t+1? $p^{(t+1)} = Mp^{(t)}$ Since it follows links uniformly at random

Page ranks are when random walker reaches a stationary state, $p^{(t+1)} = p^{(t)}$

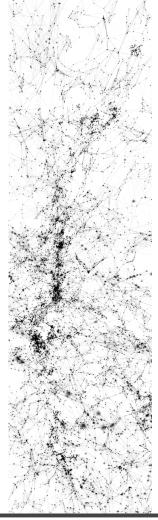
Details of PageRank Formulation by Google explained here & her

Centrality

- Degree Centrality
- Eigenvalue Centrality
- Katz Centrality
- PageRank
- **HITS**
- Closeness centrality
- Betweenness centrality

Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity

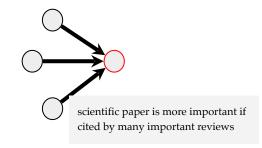


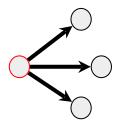
HITS: hyperlink-induced topic search

two different centrality scores

- Highly cited paper [authorities]

 nodes that contain important information authority centrality x_i
- Survey paper linking to main references [hubs]
 nodes that point us to the best authorities
 hub centrality y_i





review paper is more important if it cities many important scientific papers

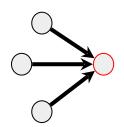
Kleinberg, J. M., Authoritative sources in a hyperlinked environment, J. ACM 46, 604–632 (1999)

P

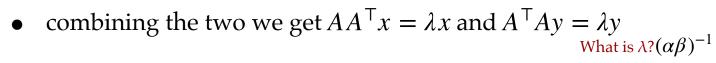
HITS: hyperlink-induced topic search

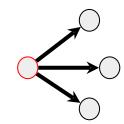
two different centrality scores

• authority centrality
$$x_i = \alpha \sum_j A_{ij} y_j$$
 $x = \alpha Ay$



• hub centrality
$$y_i = \beta \sum_j A_{ji} x_j$$
 $y = \beta A^{\top} x$





how to calculate the authority and hub centralities? eigenvectors of AA^{T} and $A^{\mathsf{T}}A$ for the largest eigenvalue to not have negative values

do we have same issue with zero value cascades as katz?

no, since scores flow both ways

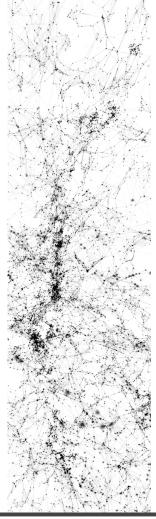
A^TA & AA^T have the same eigenvalues, since they are transpose of each other

Centrality

- Degree Centrality
- Eigenvalue Centrality
- Katz Centrality
- PageRank
- o HITS
- Closeness centrality
- Betweenness centrality

Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity



10

Closeness centrality

the mean distance from a node to other nodes, based on shortest paths

$$s_{i} = \frac{1}{n} \sum_{j} s_{ij}$$

$$x_{i} = \frac{n}{\sum_{j} s_{ij}}$$
{distance}
{centrality}

What if we have a disconnected graph?

 x_i is zero since shortest path to some nodes is infinite

Should we average inside components?

Nodes in smaller components get higher centrality since distances are smaller

guess who has the highest closeness centrality in IMDB?

Christopher Lee, 200 movies, long career

1

Closeness centrality: reformulation

the mean distance from a node to other nodes, based on shortest paths

$$s_{i} = \frac{1}{n} \sum_{j} s_{ij}$$

$$x_{i} = \frac{n}{\sum_{j} s_{ij}}$$
{distance}
{centrality}

$$x_i = \frac{1}{n-1} \sum_{j} \frac{1}{s_{ij}}$$
{reformulation}

Use the harmonic mean distance between nodes instead

What if we have a disconnected graph?

Now it naturally deals with $s_{ij} = \infty$

Is it otherwise same as the original measure?

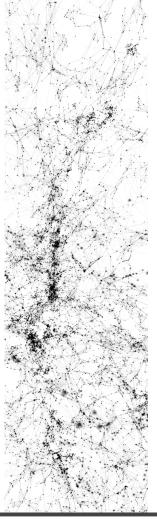
No, gives more weight to nodes that are close

Centrality

- Degree Centrality
- Eigenvalue Centrality
- Katz Centrality
- PageRank
- o HITS
- Closeness centrality
- Betweenness centrality

Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity



Betweenness centrality

the extent to which a node lies on shortest paths between other nodes

average rate at which traffic passes through node *i*

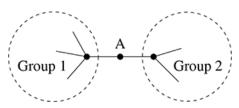
$$x_i = \frac{1}{n^2} \sum_{st} \frac{n_{st}^i}{t_{st}}$$

 n_{st}^{i} : number of shortest paths from s to t that pass through i

 t_{st} : total number of shortest paths from s to t

Flow bottlenecks

- control over information passing
- removal from the network will most disrupt communications
 - brokers: low-degree node with high betweenness, lies on a bridge

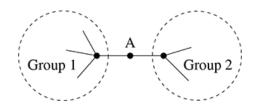


Betweenness centrality

the extent to which a node lies on shortest paths between other nodes

Flow bottlenecks

- control over information passing
- removal from the network will most disrupt communications



Betweenness centrality has many variants and approximations given its computational complexity and usefulness

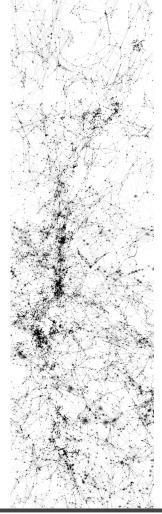
Could you guess who has the highest centrality in IMDB?

Fernando Rey worked extensively in both film and television, in both European and American films, several different languages [in between groups]

- Centrality
 - Degree Centrality
 - Eigenvalue Centrality
 - Katz Centrality
 - PageRank
 - o HITS
 - Closeness centrality
 - Betweenness centrality
- Similarity
 - Common neighbour
 - Cosine similarity
 - Jaccard similarity

 $R: v \mapsto \mathbb{R}$

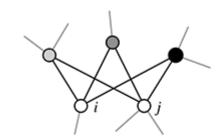
 $S:(u,v)\mapsto \mathbb{R}$



ork Science

Similarity Measures

Common Neighbours
$$n_{ij} = \sum_{k} A_{ik} A_{kj}$$



Is 3 a lot or too little? We need to normalize it

Cosine similarity

$$\sigma_{ij} = \sum_{k} \frac{A_{ik} A_{kj}}{\sqrt{d_i} \sqrt{d_j}} = \frac{n_{ij}}{\sqrt{d_i d_j}}$$

what is σ_{ij} in example?

$$3/(\sqrt{4}\times\sqrt{5})$$

$$cos(A_{i:}, A_{j:}) = \frac{A_{i:} \cdot A_{j:}}{\|A_{i:}\| \|A_{j:}\|} = \frac{\sum_{k} A_{ik} A_{jk}}{\sqrt{\sum_{k} A_{ik}^2} \sqrt{\sum_{k} A_{jk}^2}} = \frac{\sum_{k} A_{ik} A_{jk}}{\sqrt{\sum_{k} A_{ik}} \sqrt{\sum_{k} A_{jk}}} = \frac{\sum_{k} A_{ik} A_{kj}}{\sqrt{d_i} \sqrt{d_j}}$$

Similarity Measures

• Common Neighbours

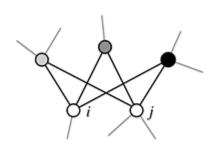
$$n_{ij} = \sum_{k} A_{ik} A_{kj}$$

• Cosine similarity

$$\sigma_{ij} = \sum_{k} \frac{A_{ik} A_{kj}}{\sqrt{d_i} \sqrt{d_j}} = \frac{n_{ij}}{\sqrt{d_i d_j}}$$

• Jaccard similarity

$$J_{ij} = \frac{\sum_{k} A_{ik} A_{kj}}{d_i + d_j - \sum_{k} A_{ik} A_{kj}} = \frac{n_{ij}}{d_i + d_j - n_{ij}}$$



$$n_{ij} = 3$$

$$\sigma_{ij} = 3/(\sqrt{4} \times \sqrt{5})$$

what is J_{ii} in example?

$$J_{ij} = 3/6$$

The (combinatorial) graph Laplacian is defined as L = D - A, which is a Symmetric Positive Semi-Definite (SPSD) matrix [28]. Its eigendecomposition gives $L = U\Lambda U^{\mathsf{T}}$, where the columns of $U \in \mathbb{R}^{N \times N}$ are orthonormal eigenvectors, namely the graph Fourier basis, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$ with $\lambda_1 \leq \dots \leq \lambda_N$ and these eigenvalues are also called frequencies. Since L is SPSD, it has N non-negative eigenvalues. Note that it is easy to see L1 = 0. Thus the smallest eigenvalue of L is 0 and 1 is a corresponding eigenvector. A graph signal is a vector $x \in \mathbb{R}^N$ defined on \mathcal{V} , where \mathbf{x}_i is defined on the node i. The graph Fourier transform of a graph signal x is defined as $x_F = \mathbf{U}^{-1}x = \mathbf{U}^{\mathsf{T}}x = [\mathbf{u}_1^{\mathsf{T}}\mathbf{x}, \dots, \mathbf{u}_N^{\mathsf{T}}\mathbf{x}]^{\mathsf{T}}$, where $u_i^{\mathsf{T}}x$ is the component of x in the direction of u_i . Here $x_{\mathcal{F}}$ is the transformed signal in the spectral domain.

Since u_i is a unit-norm eigenvector, we have

$$\lambda_i = u_i^\mathsf{T} \mathrm{L} u_i = \sum_{k,j \in \mathcal{V}, e_k, \in \mathcal{E}} (u_{i,k} - u_{i,j})^2$$

A smaller λ_i indicates a smoother basis function u_i defined on \mathcal{G} [34], which means any two elements $u_{i,k}$, $u_{i,j}$ of u_i corresponding to two connected nodes k, j tend to have more similar values.

In additional to L, some variants of graph Laplacians are commonly used in practice, e.g., the symmetric normalized Laplacian $L_{sym}=D^{-1/2}LD^{-1/2}=I-D^{-1/2}AD^{-1/2},$ and the random walk normalized Laplacian $L_{\rm rw}=\,D^{-1}L\,=\,I\,-\,D^{-1}A.\ L_{\rm rw}$ and $L_{\rm sym}$ share the same eigenvalues, which are inside [0, 2), and their corresponding eigenvectors satisfy $u_{\text{rw}}^i = D^{-1/2} u_{\text{sym}}^i$ [28].

The normalized affinity (transition) matrix derived from L_{rw} is defined as $A_{rw} = I - L_{rw} =$ $D^{-1}A$ and its eigenvalues $\lambda_i(A_{rw}) = 1 - \lambda_i(L_{rw}) \in (-1, 1]$. Similarly, $A_{sym} = I - L_{sym} = I$ $D^{-1/2}AD^{-1/2}$ is an affinity matrix as well.